### Abstract

First-principles full potential linear muffin-tin orbital–generalized gradient approximation electronic structure calculations of the new medium-(formula presented) superconductor (MTSC) (formula presented) and related diborides indicate that superconductivity in these compounds is related to the existence of (formula presented)-band holes at the (formula presented) point. Based on these calculations, we explain the absence of medium-(formula presented) superconductivity for (formula presented) (formula presented) (formula presented), and (formula presented) The simulation of a number of (formula presented)-based ternary systems using a supercell approach demonstrates that (i) the electron doping of (formula presented) (i.e., (formula presented) with (formula presented) C, N, O) and the creation of defects in the boron sublattice (nonstoichiometric (formula presented) are not favorable for superconductivity, and (ii) a possible way of searching for similar or higher MTSC should be via hole doping of (formula presented) (formula presented) or isoelectronic substitution of Mg (i.e., (formula presented) with (formula presented) Ca, Li, Na, Cu, Zn) or creating layered superstructures of the (formula presented) type.

Original language | English |
---|---|

Journal | Physical Review B - Condensed Matter and Materials Physics |

Volume | 64 |

Issue number | 2 |

DOIs | |

Publication status | Published - Jan 1 2001 |

### Fingerprint

### ASJC Scopus subject areas

- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics

### Cite this

*Physical Review B - Condensed Matter and Materials Physics*,

*64*(2). https://doi.org/10.1103/PhysRevB.64.020502

**Electronic structure of superconducting (formula presented) and related binary and ternary borides.** / Medvedeva, N. I.; Ivanovskii, A. L.; Medvedeva, J. E.; Freeman, Arthur J.

Research output: Contribution to journal › Article

*Physical Review B - Condensed Matter and Materials Physics*, vol. 64, no. 2. https://doi.org/10.1103/PhysRevB.64.020502

}

TY - JOUR

T1 - Electronic structure of superconducting (formula presented) and related binary and ternary borides

AU - Medvedeva, N. I.

AU - Ivanovskii, A. L.

AU - Medvedeva, J. E.

AU - Freeman, Arthur J

PY - 2001/1/1

Y1 - 2001/1/1

N2 - First-principles full potential linear muffin-tin orbital–generalized gradient approximation electronic structure calculations of the new medium-(formula presented) superconductor (MTSC) (formula presented) and related diborides indicate that superconductivity in these compounds is related to the existence of (formula presented)-band holes at the (formula presented) point. Based on these calculations, we explain the absence of medium-(formula presented) superconductivity for (formula presented) (formula presented) (formula presented), and (formula presented) The simulation of a number of (formula presented)-based ternary systems using a supercell approach demonstrates that (i) the electron doping of (formula presented) (i.e., (formula presented) with (formula presented) C, N, O) and the creation of defects in the boron sublattice (nonstoichiometric (formula presented) are not favorable for superconductivity, and (ii) a possible way of searching for similar or higher MTSC should be via hole doping of (formula presented) (formula presented) or isoelectronic substitution of Mg (i.e., (formula presented) with (formula presented) Ca, Li, Na, Cu, Zn) or creating layered superstructures of the (formula presented) type.

AB - First-principles full potential linear muffin-tin orbital–generalized gradient approximation electronic structure calculations of the new medium-(formula presented) superconductor (MTSC) (formula presented) and related diborides indicate that superconductivity in these compounds is related to the existence of (formula presented)-band holes at the (formula presented) point. Based on these calculations, we explain the absence of medium-(formula presented) superconductivity for (formula presented) (formula presented) (formula presented), and (formula presented) The simulation of a number of (formula presented)-based ternary systems using a supercell approach demonstrates that (i) the electron doping of (formula presented) (i.e., (formula presented) with (formula presented) C, N, O) and the creation of defects in the boron sublattice (nonstoichiometric (formula presented) are not favorable for superconductivity, and (ii) a possible way of searching for similar or higher MTSC should be via hole doping of (formula presented) (formula presented) or isoelectronic substitution of Mg (i.e., (formula presented) with (formula presented) Ca, Li, Na, Cu, Zn) or creating layered superstructures of the (formula presented) type.

UR - http://www.scopus.com/inward/record.url?scp=85038317103&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038317103&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.64.020502

DO - 10.1103/PhysRevB.64.020502

M3 - Article

VL - 64

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 2

ER -