Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: Approximate conduction band edge variations between H0 = -10 and H- = +26

L. Andrew Lyon, Joseph T Hupp

Research output: Contribution to journalArticle

173 Citations (Scopus)

Abstract

A reflectance method has been used to assess conduction band edge energies (Ecb) for nanocrystalline TiO2(anatase) electrodes in contact with aqueous electrolytes. The measurements, which were made over a range of nearly 40 pH units, reveal a Nernstian dependence of Ecb upon pH over most of this range, i.e., a -64 mV shift per unit decrease in log(proton activity) between H0 = -8 and H- = +23. Electrochemical quartz crystal microbalance (EQCM) measurements have established that charge compensating proton uptake occurs at potentials negative of Ecb. Uptake occurs over the entire EQCM-accessible pH range (H0 = -5 to pH = +11). The combined findings are inconsistent with Ecb control solely via surface protonation and deprotonation reactions, whose pKa's occur in the vicinity of pH 4 and 10. They are consistent, however, with a mechanism whereby: (a) electrochemical generation of Ti(III) trap sites, in the log(proton activity) range from H0 = -8 to H- = +23, is accompanied quantitatively by proton intercalation, (b) conversion of the trap sites back to oxidation state IV is accompanied quantitatively by proton expulsion, and (c) the conduction band edge energy is controlled by the pH-dependent trap-based Ti(III/IV) couple. The pH independence found for Ecb above H- = +23 and below H0 = -8 is ascribed to an eventual decoupling of proton intercalation from electron addition.

Original languageEnglish
Pages (from-to)4623-4628
Number of pages6
JournalJournal of Physical Chemistry B
Volume103
Issue number22
Publication statusPublished - Jun 3 1999

Fingerprint

Conduction bands
titanium oxides
Titanium dioxide
Protons
conduction bands
aqueous solutions
protons
Quartz crystal microbalances
Intercalation
traps
quartz crystals
intercalation
microbalances
Hydrogen
Deprotonation
Protonation
expulsion
Electrolytes
titanium dioxide
anatase

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

@article{d378620f4a374d3ebc5163a7814100ed,
title = "Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: Approximate conduction band edge variations between H0 = -10 and H- = +26",
abstract = "A reflectance method has been used to assess conduction band edge energies (Ecb) for nanocrystalline TiO2(anatase) electrodes in contact with aqueous electrolytes. The measurements, which were made over a range of nearly 40 pH units, reveal a Nernstian dependence of Ecb upon pH over most of this range, i.e., a -64 mV shift per unit decrease in log(proton activity) between H0 = -8 and H- = +23. Electrochemical quartz crystal microbalance (EQCM) measurements have established that charge compensating proton uptake occurs at potentials negative of Ecb. Uptake occurs over the entire EQCM-accessible pH range (H0 = -5 to pH = +11). The combined findings are inconsistent with Ecb control solely via surface protonation and deprotonation reactions, whose pKa's occur in the vicinity of pH 4 and 10. They are consistent, however, with a mechanism whereby: (a) electrochemical generation of Ti(III) trap sites, in the log(proton activity) range from H0 = -8 to H- = +23, is accompanied quantitatively by proton intercalation, (b) conversion of the trap sites back to oxidation state IV is accompanied quantitatively by proton expulsion, and (c) the conduction band edge energy is controlled by the pH-dependent trap-based Ti(III/IV) couple. The pH independence found for Ecb above H- = +23 and below H0 = -8 is ascribed to an eventual decoupling of proton intercalation from electron addition.",
author = "Lyon, {L. Andrew} and Hupp, {Joseph T}",
year = "1999",
month = "6",
day = "3",
language = "English",
volume = "103",
pages = "4623--4628",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "22",

}

TY - JOUR

T1 - Energetics of the nanocrystalline titanium dioxide/aqueous solution interface

T2 - Approximate conduction band edge variations between H0 = -10 and H- = +26

AU - Lyon, L. Andrew

AU - Hupp, Joseph T

PY - 1999/6/3

Y1 - 1999/6/3

N2 - A reflectance method has been used to assess conduction band edge energies (Ecb) for nanocrystalline TiO2(anatase) electrodes in contact with aqueous electrolytes. The measurements, which were made over a range of nearly 40 pH units, reveal a Nernstian dependence of Ecb upon pH over most of this range, i.e., a -64 mV shift per unit decrease in log(proton activity) between H0 = -8 and H- = +23. Electrochemical quartz crystal microbalance (EQCM) measurements have established that charge compensating proton uptake occurs at potentials negative of Ecb. Uptake occurs over the entire EQCM-accessible pH range (H0 = -5 to pH = +11). The combined findings are inconsistent with Ecb control solely via surface protonation and deprotonation reactions, whose pKa's occur in the vicinity of pH 4 and 10. They are consistent, however, with a mechanism whereby: (a) electrochemical generation of Ti(III) trap sites, in the log(proton activity) range from H0 = -8 to H- = +23, is accompanied quantitatively by proton intercalation, (b) conversion of the trap sites back to oxidation state IV is accompanied quantitatively by proton expulsion, and (c) the conduction band edge energy is controlled by the pH-dependent trap-based Ti(III/IV) couple. The pH independence found for Ecb above H- = +23 and below H0 = -8 is ascribed to an eventual decoupling of proton intercalation from electron addition.

AB - A reflectance method has been used to assess conduction band edge energies (Ecb) for nanocrystalline TiO2(anatase) electrodes in contact with aqueous electrolytes. The measurements, which were made over a range of nearly 40 pH units, reveal a Nernstian dependence of Ecb upon pH over most of this range, i.e., a -64 mV shift per unit decrease in log(proton activity) between H0 = -8 and H- = +23. Electrochemical quartz crystal microbalance (EQCM) measurements have established that charge compensating proton uptake occurs at potentials negative of Ecb. Uptake occurs over the entire EQCM-accessible pH range (H0 = -5 to pH = +11). The combined findings are inconsistent with Ecb control solely via surface protonation and deprotonation reactions, whose pKa's occur in the vicinity of pH 4 and 10. They are consistent, however, with a mechanism whereby: (a) electrochemical generation of Ti(III) trap sites, in the log(proton activity) range from H0 = -8 to H- = +23, is accompanied quantitatively by proton intercalation, (b) conversion of the trap sites back to oxidation state IV is accompanied quantitatively by proton expulsion, and (c) the conduction band edge energy is controlled by the pH-dependent trap-based Ti(III/IV) couple. The pH independence found for Ecb above H- = +23 and below H0 = -8 is ascribed to an eventual decoupling of proton intercalation from electron addition.

UR - http://www.scopus.com/inward/record.url?scp=0000148709&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000148709&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000148709

VL - 103

SP - 4623

EP - 4628

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 22

ER -