TY - JOUR
T1 - Energy and photoinduced electron transfer in porphyrin-fullerene dyads
AU - Kuciauskas, Darius
AU - Lin, Su
AU - Seely, Gilbert R.
AU - Moore, Ana L.
AU - Moore, Thomas A.
AU - Gust, Devens
AU - Drovetskaya, Tatiana
AU - Reed, Christopher A.
AU - Boyd, Peter D.W.
PY - 1996
Y1 - 1996
N2 - Time-resolved fluorescence and absorption techniques have been used to investigate energy and photoinduced electron transfer in a covalently linked free-base porphyrin - fullerene dyad and its zinc analog. In toluene, the porphyrin first excited singlet states decay in about 20 ps by singlet - singlet energy transfer to the fullerene. The fullerene first excited singlet state is not quenched and undergoes intersystem crossing to the triplet, which exists in equilibrium with the porphyrin triplet state. In benzonitrile, photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene competes with energy transfer. The fullerene excited singlet state is also quenched by electron transfer from the porphyrin. Overall, the charge-separated state is produced with a quantum yield approaching unity. This state lives for 290 ps in the free-base dyad and 50 ps in the zinc analog. These long lifetimes suggest that such dyads may be useful as components of more complex light-harvesting systems.
AB - Time-resolved fluorescence and absorption techniques have been used to investigate energy and photoinduced electron transfer in a covalently linked free-base porphyrin - fullerene dyad and its zinc analog. In toluene, the porphyrin first excited singlet states decay in about 20 ps by singlet - singlet energy transfer to the fullerene. The fullerene first excited singlet state is not quenched and undergoes intersystem crossing to the triplet, which exists in equilibrium with the porphyrin triplet state. In benzonitrile, photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene competes with energy transfer. The fullerene excited singlet state is also quenched by electron transfer from the porphyrin. Overall, the charge-separated state is produced with a quantum yield approaching unity. This state lives for 290 ps in the free-base dyad and 50 ps in the zinc analog. These long lifetimes suggest that such dyads may be useful as components of more complex light-harvesting systems.
UR - http://www.scopus.com/inward/record.url?scp=33751156280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751156280&partnerID=8YFLogxK
U2 - 10.1021/jp9612745
DO - 10.1021/jp9612745
M3 - Article
AN - SCOPUS:33751156280
VL - 100
SP - 15926
EP - 15932
JO - Journal of Physical Chemistry
JF - Journal of Physical Chemistry
SN - 0022-3654
IS - 39
ER -