Energy-band alignment of II-VI/Zn3P2 heterojunctions from x-ray photoemission spectroscopy

Jeffrey P. Bosco, David O. Scanlon, Graeme W. Watson, Nathan S Lewis, Harry A. Atwater

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The energy-band alignments for zb-ZnSe(001)/α-Zn3P 2(001), w-CdS(0001)/α-Zn3P2(001), and w-ZnO(0001)/α-Zn3P2(001) heterojunctions have been determined using high-resolution x-ray photoelectron spectroscopy via the Kraut method. Ab initio hybrid density functional theory calculations of the valence-band density of states were used to determine the energy differences between the core level and valence-band maximum for each of the bulk materials. The ZnSe/Zn3P2 heterojunction had a small conduction-band offset, ΔEC, of -0.03 ± 0.11 eV, demonstrating a nearly ideal energy-band alignment for use in thin-film photovoltaic devices. The CdS/Zn3P2 heterojunction was also type-II but had a larger conduction-band offset of ΔEC = -0.76 ± 0.10 eV. A type-III alignment was observed for the ZnO/Zn3P2 heterojunction, with ΔEC = -1.61 ± 0.16 eV indicating the formation of a tunnel junction at the oxide-phosphide interface. The data also provide insight into the role of the II-VI/Zn3P2 band alignment in the reported performance of Zn3P2 heterojunction solar cells.

Original languageEnglish
Article number203705
JournalJournal of Applied Physics
Volume113
Issue number20
DOIs
Publication statusPublished - 2013

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this