Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization

Jin Myoung Lim, Norman S. Luu, Kyu Young Park, Mark T.Z. Tan, Sungkyu Kim, Julia R. Downing, Kai He, Vinayak P. Dravid, Mark C. Hersam

Research output: Contribution to journalArticlepeer-review

Abstract

Layered, nickel-rich lithium transition metal oxides have emerged as leading candidates for lithium-ion battery (LIB) cathode materials. High-performance applications for nickel-rich cathodes, such as electric vehicles and grid-level energy storage, demand electrodes that deliver high power without compromising cell lifetimes or impedance. Nanoparticle-based nickel-rich cathodes seemingly present a solution to this challenge due to shorter lithium-ion diffusion lengths compared to incumbent micrometer-scale active material particles. However, since smaller particle sizes imply that surface effects become increasingly important, particle surface chemistry must be well characterized and controlled to achieve robust electrochemical properties. Moreover, residual surface impurities can disrupt commonly used carbon coating schemes, which result in compromised cell performance. Using x-ray photoelectron spectroscopy, here we present a detailed characterization of the surface chemistry of LiNi0.8Al0.15Co0.05O2 (NCA) nanoparticles, ultimately identifying surface impurities that limit LIB performance. With this chemical insight, annealing procedures are developed that minimize these surface impurities, thus improving electrochemical properties and enabling conformal graphene coatings that reduce cell impedance, maximize electrode packing density, and enhance cell lifetime fourfold. Overall, this work demonstrates that controlling and stabilizing surface chemistry enables the full potential of nanostructured nickel-rich cathodes to be realized in high-performance LIB technology.

Original languageEnglish
Article number063210
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume38
Issue number6
DOIs
Publication statusPublished - Dec 1 2020

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization'. Together they form a unique fingerprint.

Cite this