EPR-ENDOR characterization of ( 17O, 1H, 2H) water in manganese catalase and its relevance to the oxygen-evolving complex of photosystem II

Iain L. McConnell, Vladimir M. Grigoryants, Charles P. Scholes, William K. Myers, Ping Yu Chen, James W. Whittaker, Gary W. Brudvig

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

The synthesis of efficient water-oxidation catalysts demands insight into the only known, naturally occurring water-oxidation catalyst, the oxygen-evolving complex (OEC) of photosystem II (PSII). Understanding the water oxidation mechanism requires knowledge of where and when substrate water binds to the OEC. Mn catalase in its Mn(III)-Mn(IV) state is a protein model of the OEC's S 2 state. From 17O-labeled water exchanged into the di-μ-oxo di-Mn(III,IV) coordination sphere of Mn catalase, CW Q-band ENDOR spectroscopy revealed two distinctly different 17O signals incorporated in distinctly different time regimes. First, a signal appearing after 2 h of 17O exchange was detected with a 13.0 MHz hyperfine coupling. From similarity in the time scale of isotope incorporation and in the 17O μ-oxo hyperfine coupling of the di-μ-oxo di-Mn(III,IV) bipyridine model (Usov, O. M.; Grigoryants, V. M.; Tagore, R.; Brudvig, G. W.; Scholes, C. P.J. Am. Chem. Soc. 2007, 129, 11886-11887), this signal was assigned to μ-oxo oxygen. EPR line broadening was obvious from this 17O μ-oxo species. Earlier exchange proceeded on the minute or faster time scale into a non-μ-oxo position, from which 17O ENDOR showed a smaller 3.8 MHz hyperfine coupling and possible quadrupole splittings, indicating a terminal water of Mn(III). Exchangeable proton/deuteron hyperfine couplings, consistent with terminal water ligation to Mn(III), also appeared. Q-band CW ENDOR from the S 2 state of the OEC was obtained following multihour 17O exchange, which showed a 17O hyperfine signal with a 11 MHz hyperfine coupling, tentatively assigned as μ-oxo- 17O by resemblance to the μ-oxo signals from Mn catalase and the di-μ-oxo di-Mn(III,IV) bipyridine model.

Original languageEnglish
Pages (from-to)1504-1512
Number of pages9
JournalJournal of the American Chemical Society
Volume134
Issue number3
DOIs
Publication statusPublished - Jan 25 2012

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'EPR-ENDOR characterization of ( <sup>17</sup>O, <sup>1</sup>H, <sup>2</sup>H) water in manganese catalase and its relevance to the oxygen-evolving complex of photosystem II'. Together they form a unique fingerprint.

  • Cite this