Exploratory Synthesis with Molten Aluminum as a Solvent and Routes to Multinary Aluminum Silicides. Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27): A New Silicide with a Ferromagnetic Transition at 17.5 K

X. Z. Chen, S. Sportouch, B. Sieve, P. Brazis, C. R. Kannewurf, J. A. Cowen, R. Patschke, Mercouri G Kanatzidis

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

A new quaternary silicide, Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27), has been synthesized from Sm2O3, NiO, and Si or Sm, Ni, and Si in Al metal flux at 800 °C. The structure, determined by single-crystal X-ray diffraction, is tetragonal, space group P4/nmm (No. 129) with Z = 2, and lattice parameters a = b = 5.8060(3) Å, c = 14.845(1) Å. Refinement based upon F2 [I > 2σ(I)] yielded R1 = 0.0252 and wR2 = 0.0634. The compound exhibits a new structure type containing two different alternating layers which are linked together through Si/Ni-Si bonds to form a three-dimensional framework. One layer is formed by edge-shared (the edges parallel to c) NiAl8 cubes. The other layer is a Si-based net which consists of six-member, five-member, and square planar rings. The structure of this compound cannot be rationalized on the basis of the Zintl-Klemm concept. Extended Hückel, tight binding calculations were carried out for different hypothetical stoichiometries, besides the observed one, of the compound Sm2Ni(NixSi1-x)Al4Si6. Five models were investigated with x = 0, 0.25, 0.5, 0.75, and 1. The compounds with x = 0 and 0.25 are predicted to be more stable than the others. Electrical conductivity and thermopower data indicate that the compound is p-type metallic. The temperature-dependent magnetic susceptibility exhibits an antiferromagnetic ordering near 60 K and a weak ferromagnetic (WF) transition near 17 K. High temperature (150-300 K) magnetic susceptibility data suggest that Sm is in the 3+ oxidation state.

Original languageEnglish
Pages (from-to)3202-3211
Number of pages10
JournalChemistry of Materials
Volume10
Issue number10
Publication statusPublished - Oct 1998

Fingerprint

Silicides
Aluminum
Magnetic susceptibility
Molten materials
Thermoelectric power
Stoichiometry
Lattice constants
Metals
Single crystals
Fluxes
X ray diffraction
Oxidation
Temperature
Electric Conductivity
samarium oxide

ASJC Scopus subject areas

  • Materials Science(all)
  • Materials Chemistry

Cite this

Exploratory Synthesis with Molten Aluminum as a Solvent and Routes to Multinary Aluminum Silicides. Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27) : A New Silicide with a Ferromagnetic Transition at 17.5 K. / Chen, X. Z.; Sportouch, S.; Sieve, B.; Brazis, P.; Kannewurf, C. R.; Cowen, J. A.; Patschke, R.; Kanatzidis, Mercouri G.

In: Chemistry of Materials, Vol. 10, No. 10, 10.1998, p. 3202-3211.

Research output: Contribution to journalArticle

@article{8716dc1ed33e4d34be724bb8d808b888,
title = "Exploratory Synthesis with Molten Aluminum as a Solvent and Routes to Multinary Aluminum Silicides. Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27): A New Silicide with a Ferromagnetic Transition at 17.5 K",
abstract = "A new quaternary silicide, Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27), has been synthesized from Sm2O3, NiO, and Si or Sm, Ni, and Si in Al metal flux at 800 °C. The structure, determined by single-crystal X-ray diffraction, is tetragonal, space group P4/nmm (No. 129) with Z = 2, and lattice parameters a = b = 5.8060(3) {\AA}, c = 14.845(1) {\AA}. Refinement based upon F2 [I > 2σ(I)] yielded R1 = 0.0252 and wR2 = 0.0634. The compound exhibits a new structure type containing two different alternating layers which are linked together through Si/Ni-Si bonds to form a three-dimensional framework. One layer is formed by edge-shared (the edges parallel to c) NiAl8 cubes. The other layer is a Si-based net which consists of six-member, five-member, and square planar rings. The structure of this compound cannot be rationalized on the basis of the Zintl-Klemm concept. Extended H{\"u}ckel, tight binding calculations were carried out for different hypothetical stoichiometries, besides the observed one, of the compound Sm2Ni(NixSi1-x)Al4Si6. Five models were investigated with x = 0, 0.25, 0.5, 0.75, and 1. The compounds with x = 0 and 0.25 are predicted to be more stable than the others. Electrical conductivity and thermopower data indicate that the compound is p-type metallic. The temperature-dependent magnetic susceptibility exhibits an antiferromagnetic ordering near 60 K and a weak ferromagnetic (WF) transition near 17 K. High temperature (150-300 K) magnetic susceptibility data suggest that Sm is in the 3+ oxidation state.",
author = "Chen, {X. Z.} and S. Sportouch and B. Sieve and P. Brazis and Kannewurf, {C. R.} and Cowen, {J. A.} and R. Patschke and Kanatzidis, {Mercouri G}",
year = "1998",
month = "10",
language = "English",
volume = "10",
pages = "3202--3211",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Exploratory Synthesis with Molten Aluminum as a Solvent and Routes to Multinary Aluminum Silicides. Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27)

T2 - A New Silicide with a Ferromagnetic Transition at 17.5 K

AU - Chen, X. Z.

AU - Sportouch, S.

AU - Sieve, B.

AU - Brazis, P.

AU - Kannewurf, C. R.

AU - Cowen, J. A.

AU - Patschke, R.

AU - Kanatzidis, Mercouri G

PY - 1998/10

Y1 - 1998/10

N2 - A new quaternary silicide, Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27), has been synthesized from Sm2O3, NiO, and Si or Sm, Ni, and Si in Al metal flux at 800 °C. The structure, determined by single-crystal X-ray diffraction, is tetragonal, space group P4/nmm (No. 129) with Z = 2, and lattice parameters a = b = 5.8060(3) Å, c = 14.845(1) Å. Refinement based upon F2 [I > 2σ(I)] yielded R1 = 0.0252 and wR2 = 0.0634. The compound exhibits a new structure type containing two different alternating layers which are linked together through Si/Ni-Si bonds to form a three-dimensional framework. One layer is formed by edge-shared (the edges parallel to c) NiAl8 cubes. The other layer is a Si-based net which consists of six-member, five-member, and square planar rings. The structure of this compound cannot be rationalized on the basis of the Zintl-Klemm concept. Extended Hückel, tight binding calculations were carried out for different hypothetical stoichiometries, besides the observed one, of the compound Sm2Ni(NixSi1-x)Al4Si6. Five models were investigated with x = 0, 0.25, 0.5, 0.75, and 1. The compounds with x = 0 and 0.25 are predicted to be more stable than the others. Electrical conductivity and thermopower data indicate that the compound is p-type metallic. The temperature-dependent magnetic susceptibility exhibits an antiferromagnetic ordering near 60 K and a weak ferromagnetic (WF) transition near 17 K. High temperature (150-300 K) magnetic susceptibility data suggest that Sm is in the 3+ oxidation state.

AB - A new quaternary silicide, Sm2Ni(NixSi1-x)Al4Si6 (x = 0.18-0.27), has been synthesized from Sm2O3, NiO, and Si or Sm, Ni, and Si in Al metal flux at 800 °C. The structure, determined by single-crystal X-ray diffraction, is tetragonal, space group P4/nmm (No. 129) with Z = 2, and lattice parameters a = b = 5.8060(3) Å, c = 14.845(1) Å. Refinement based upon F2 [I > 2σ(I)] yielded R1 = 0.0252 and wR2 = 0.0634. The compound exhibits a new structure type containing two different alternating layers which are linked together through Si/Ni-Si bonds to form a three-dimensional framework. One layer is formed by edge-shared (the edges parallel to c) NiAl8 cubes. The other layer is a Si-based net which consists of six-member, five-member, and square planar rings. The structure of this compound cannot be rationalized on the basis of the Zintl-Klemm concept. Extended Hückel, tight binding calculations were carried out for different hypothetical stoichiometries, besides the observed one, of the compound Sm2Ni(NixSi1-x)Al4Si6. Five models were investigated with x = 0, 0.25, 0.5, 0.75, and 1. The compounds with x = 0 and 0.25 are predicted to be more stable than the others. Electrical conductivity and thermopower data indicate that the compound is p-type metallic. The temperature-dependent magnetic susceptibility exhibits an antiferromagnetic ordering near 60 K and a weak ferromagnetic (WF) transition near 17 K. High temperature (150-300 K) magnetic susceptibility data suggest that Sm is in the 3+ oxidation state.

UR - http://www.scopus.com/inward/record.url?scp=0000882811&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000882811&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000882811

VL - 10

SP - 3202

EP - 3211

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 10

ER -