Exploring the multiple reaction pathways for the H + cyc-C 3H 6 reaction

Hua Gen Yu, James Muckerman

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Reaction pathways for the hydrogen atom plus cyclopropane (cyc-C 3H 6) reaction are studied using an extrapolated coupled-cluster/complete basis set (CBS) method based on the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. For this activated reaction, results reveal two reaction mechanisms, a direct H-abstraction and a H-addition/ring-opening. The hydrogen-abstraction reaction yields the H 2 and cyclopropyl (cyc-C 3H 5) radical products. The vibrationally adiabatic ground-state (VAG) barrier height is predicted to be 13.03 kcal/mol. The isomerization barrier height from the product cyclopropyl to allyl radical is 21.98 kcal/mol via a cyc-C 3H 5 ring-opening process. In addition, the H-addition and ring-opening mechanism will lead to an n-C 3H 7 radical, which can result in a variety of products such as CH 3 + C 2H 4, H + CH 3CHCH 2, and H 2 + C 3H 5, etc. The VAG barrier height of the H-addition reaction is 16.49 kcal/mol, which is slightly higher than that of the direct H-abstraction reaction. Although the H + cyc-C 3CH 6 → CH 4CH reaction is exoergic by 11.90 kcal/mol, this reaction is unlikely due to a high barrier of 43.05 kcal/mol along the minimum energy path.

Original languageEnglish
Pages (from-to)10844-10849
Number of pages6
JournalJournal of Physical Chemistry A
Volume108
Issue number49
DOIs
Publication statusPublished - Dec 9 2004

    Fingerprint

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this