Fast and efficient molecular electrocatalysts for H2 production: Using hydrogenase enzymes as guides

Jenny Y. Yang, R. Morris Bullock, M. Rakowski DuBois, Daniel L. DuBois

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)


Hydrogen generation using solar energy will require the development of efficient electrocatalysts for proton reduction. This article discusses the important role that proton movement plays in hydrogenase enzymes and potential devices for solar generation. Studies of hydrogenase enzymes provide many important design principles for the development of simpler molecular catalysts. These principles are illustrated with examples from the literature and from the authors' laboratories. In particular, pendant bases incorporated in the second coordination sphere of catalytic molecules play a number of important roles that are crucial to efficient catalysis. These roles include acting as relays to move protons between the metal center and solution, promoting intra-and intermolecular proton transfer reactions, coupling proton and electron transfer reactions, assisting heterolytic cleavage of hydrogen, and stabilizing critical reaction intermediates. The importance of controlling proton movement on the molecular scale underscores the importance of a similar degree of control in devices designed for the solar production of hydrogen or any fuel generation process involving multiple electrons and protons.

Original languageEnglish
Pages (from-to)39-47
Number of pages9
JournalMRS Bulletin
Issue number1
Publication statusPublished - Jan 2011

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Fast and efficient molecular electrocatalysts for H<sub>2</sub> production: Using hydrogenase enzymes as guides'. Together they form a unique fingerprint.

Cite this