Formation of acene-based polymers: Mechanistic computational study

Natalia Zamoshchik, Sanjio S. Zade, Michael Bendikov

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Understanding the mechanism of linear acene decomposition and its reactivity is a prerequisite for controlling the stability of acenes and their future applications. Previously, we suggested that long acenes may undergo polymerization since the polymerization product is thermodynamically more stable than the dimerization product. However, due to kinetic considerations, the most thermodynamically stable product, the polymer, might not necessarily be formed. To elucidate the situation, we investigated the mechanisms of acene polymerization computationally, using pentacene, hexacene, and heptacene as representative examples. Similarly to dimerization, acene polymerization follows a stepwise biradical pathway. Structural and steric hindrance of the polymer backbone forces acene polymerization to proceed via the less reactive noncentral benzene rings. Consequently, dimerization is always kinetically more favorable than polymerization, irrespective of acene length. Although, for long acenes starting from hexacene, both polymerization and dimerization are barrierless pathways relative to the reactants, polymerization is thermodynamically preferred for hexacene and heptacene and even more so for longer acenes (since polymerization forms four new C-C bonds while dimerization forms only two). Indeed, reinvestigation of available experimental data suggests that acene-based polymers were probably obtained experimentally previously.

Original languageEnglish
Pages (from-to)10058-10068
Number of pages11
JournalJournal of Organic Chemistry
Issue number20
Publication statusPublished - Oct 18 2013

ASJC Scopus subject areas

  • Organic Chemistry

Fingerprint Dive into the research topics of 'Formation of acene-based polymers: Mechanistic computational study'. Together they form a unique fingerprint.

Cite this