Four novel Co(II) and Mn(II) coordination polymers with triazolyl derivate: Syntheses, crystal structures and magnetic properties

Lei Zhang, Yun Ling, Ai Xi Hu, Ting Ting Yao, Jing Li

Research output: Contribution to journalArticle

17 Citations (Scopus)


Four novel coordination polymers, one-dimensional chains [M(PTE)2(N3)2]n (M = Mn for 1 and Co for 2), and two-dimensional layers [M(PTE)2(dca)2]n (M = Mn for 3 and Co for 4) (PTE = 1-(2,4-difluorophenyl-2-(1H-1,2,4-triazol-1-yl)ethanone, dca = dicyanamide anion, N(CN)2-), have been synthesized under mild ambient conditions and structurally characterized by single crystal X-ray diffraction. In all four crystal structures, the metal atoms adopt octahedral coordination geometry with six nitrogen atoms from two monodentate PTE ligands and four azido (or dca) bridging ligands. The crystal structures of 1 and 2 are isostructural 1-D polymeric chains, alternatively linked by double end-on and double end-to-end azido bridges. However, the bent dca ligands as bidentate μ2-1,5 bridging ligands interlink the octahedral metal units to lead to 2-D (4,4) grid networks in 3 and 4. Temperature-dependent magnetic measurements in 2-300 K have been performed for these four polymers, and suggest alternative ferro- and antiferromagnetic couplings for end-on and end-to-end azido bridges in 1, and the dominant ferromagnetic coupling in 2, respectively. Both polymers 3 and 4 show weak antiferromagnetic exchanges through the μ2-1,5-dca bridges. The effects of auxiliary coligands on the structure and the nature of these magnetic exchanges are discussed in the light of the crystal structures in detail.

Original languageEnglish
Pages (from-to)4867-4874
Number of pages8
JournalInorganica Chimica Acta
Issue number14
Publication statusPublished - Nov 10 2009



  • Azido bridge
  • Coordination polymer
  • Crystal structure
  • Magnetic property
  • Triazolyl derivate

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Cite this