Abstract
This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf3Fe4Sn4 and Hf9Fe4-xSn10+x. Hf3Fe4Sn4 adopts an ordered variant the Hf3Cu8 structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) Å, b=8.8466(5) Å, and c=10.6069(6) Å. Hf9Fe4-xSn10+x, on the other hand, adopts a new structure type in Cmc21 with unit cell edges of a=5.6458(3) Å, b=35.796(2) Å, and c=8.88725(9) Å for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Both structures are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe-Fe homoatomic bonding. Hf9Fe4-xSn10+x exhibits antiferromagnetic order at TN=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf3Fe4Sn4 is also an antiferromagnet with a rather high ordering temperature of TN=373(5) K. Single crystal resistivity measurements indicate that Hf3Fe4Sn4 behaves as a Fermi liquid at low temperatures, indicating strong electron correlation.
Original language | English |
---|---|
Pages (from-to) | 130-137 |
Number of pages | 8 |
Journal | Journal of Solid State Chemistry |
Volume | 236 |
DOIs | |
Publication status | Published - Apr 1 2016 |
Keywords
- Flux synthesis
- Intermetallic compounds
- Magnetism
- X-ray crystallography
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry