Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

Francesco Meinardi, Hunter McDaniel, Francesco Carulli, Annalisa Colombo, Kirill A. Velizhanin, Nikolay S. Makarov, Roberto Simonutti, Victor I Klimov, Sergio Brovelli

Research output: Contribution to journalArticle

225 Citations (Scopus)

Abstract

Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI 2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSe x S 2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

Original languageEnglish
Pages (from-to)878-885
Number of pages8
JournalNature Nanotechnology
Volume10
Issue number10
DOIs
Publication statusPublished - Oct 1 2015

    Fingerprint

ASJC Scopus subject areas

  • Bioengineering
  • Biomedical Engineering
  • Materials Science(all)
  • Electrical and Electronic Engineering
  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics

Cite this

Meinardi, F., McDaniel, H., Carulli, F., Colombo, A., Velizhanin, K. A., Makarov, N. S., ... Brovelli, S. (2015). Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nature Nanotechnology, 10(10), 878-885. https://doi.org/10.1038/nnano.2015.178