Individual interactions influence the crystalline order for membrane proteins

A. Camara-Artigas, C. L. Magee, J. C. Williams, J. P. Allen

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The role of contact interactions in the crystallization of membrane proteins was assessed by mutation of amino-acid residues on the surface of the reaction center from Rhodobacter sphaeroides. Five single-site mutants were constructed, with changes in contact regions found in the trigonal and tetragonal forms but not the orthorhombic form. Crystallization trials for the tetragonal form yielded either no crystals or crystals with an altered morphology, whereas crystals grew in the other two forms, indicating that these interactions are essential for the stability of the tetragonal crystals. Changes in the structures determined by X-ray diffraction of trigonal crystals for each mutant were related to the quality of the diffraction. Significant differences in the resolution limit of the crystals were associated with the loss of specific interactions between neighboring proteins. The results suggest that the contact regions are crucial for obtaining highly ordered crystals of membrane proteins.

Original languageEnglish
Pages (from-to)1281-1286
Number of pages6
JournalActa Crystallographica Section D: Biological Crystallography
Volume57
Issue number9
DOIs
Publication statusPublished - Oct 3 2001

ASJC Scopus subject areas

  • Structural Biology

Fingerprint Dive into the research topics of 'Individual interactions influence the crystalline order for membrane proteins'. Together they form a unique fingerprint.

  • Cite this