Influence of indium tin oxide surface treatment on spatially localized photocurrent variations in bulk heterojunction organic photovoltaic devices

Benjamin J. Leever, Ian P. Murray, Michael F. Durstock, Tobin J Marks, Mark C Hersam

Research output: Contribution to journalArticle

7 Citations (Scopus)


A correlation between anode surface treatment and spatially localized photocurrent variations has been found in bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric acid methyl ester (P3HT:PCBM) organic photovoltaic (OPV) devices. Atomic force photovoltaic microscopy was used to scan arrays of 2 μm diameter OPV devices with varied indium tin oxide (ITO) surface treatments. The standard deviation of the average photocurrent was found to be 11.4% for devices fabricated on untreated ITO, 8.6% for devices with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) interlayer, and 6.7% for devices with a HCl-treated ITO surface. These results suggest that spatial variations in the structure and electronic properties of the anode surface degrade the overall performance of OPVs, including reductions in short-circuit current by up to 20%, thus highlighting the importance of surface treatments that improve the homogeneity of ITO.

Original languageEnglish
Pages (from-to)22688-22694
Number of pages7
JournalJournal of Physical Chemistry C
Issue number45
Publication statusPublished - Nov 17 2011


ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films
  • Energy(all)

Cite this