Intramolecular hydrophosphination/cyclization of phosphinoalkenes and phosphinoalkynes catalyzed by organolanthanides

Scope, selectivity, and mechanism

M. R. Douglass, C. L. Stern, Tobin J Marks

Research output: Contribution to journalArticle

178 Citations (Scopus)

Abstract

Organolanthanide complexes of the general type Cp′2LnE(TMS)2 (Cp′ = η/5-Me5C5; Ln = La, Sm, Y, Lu; E = CH, N; TMS = SiMe3) serve as effective precatalysts for the rapid intramolecular hydrophosphination/cyclization of the phosphinoalkenes and phosphinoalkynes RHP(CH2)nCH=CH2 (R = Ph, H; n = 3, 4) and H2P(CH2)nC≡C-Ph (n = 3, 4) to afford the corresponding heterocycles CH3CH(CH2)nPR and Ph(H)C=C(CH2)nPH, respectively. Kinetic and mechanistic data for these processes exhibit parallels to, as well as distinct differences from, organolanthanide-mediated intramolecular hydroamination/cyclizations. The turnover-limiting step of the present catalytic cycle is insertion of the carbon-carbon unsaturation into the Ln-P bond, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [substrate] over approximately one half-life, with inhibition by heterocyclic product intruding at higher conversions. The catalyst resting state is likely a lanthanocene phosphine-phosphido complex, and dimeric [Cp′2YP(H)Ph]2 was isolated and cystallographically characterized. Lanthanide identity and ancillary ligand structure effects on rate and selectivity vary with substrate unsaturation: larger metal ions and more open ligand systems lead to higher turnover frequencies for phosphinoalkynes, and intermediate-sized metal ions with Cp′2 ligands lead to maximum turnover frequencies for phosphinoalkenes. Diastereoselectivity patterns also vary with substrate, lanthanide ion, and ancillary ligands. Similarities and differences in hydrophosphination vis-à-vis analogous organolanthanide-mediated hydroamination are enumerated.

Original languageEnglish
Pages (from-to)10221-10238
Number of pages18
JournalJournal of the American Chemical Society
Volume123
Issue number42
DOIs
Publication statusPublished - Oct 24 2001

Fingerprint

Cyclization
Ligands
Lanthanoid Series Elements
phosphine
Ions
Rare earth elements
Metal ions
Substrates
Carbon
Metalloids
Catalysts
Heavy ions
Byproducts
Half-Life
Metals
Kinetics

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{a4fd97721e1648cf9c4b23793bfa7fa8,
title = "Intramolecular hydrophosphination/cyclization of phosphinoalkenes and phosphinoalkynes catalyzed by organolanthanides: Scope, selectivity, and mechanism",
abstract = "Organolanthanide complexes of the general type Cp′2LnE(TMS)2 (Cp′ = η/5-Me5C5; Ln = La, Sm, Y, Lu; E = CH, N; TMS = SiMe3) serve as effective precatalysts for the rapid intramolecular hydrophosphination/cyclization of the phosphinoalkenes and phosphinoalkynes RHP(CH2)nCH=CH2 (R = Ph, H; n = 3, 4) and H2P(CH2)nC≡C-Ph (n = 3, 4) to afford the corresponding heterocycles CH3CH(CH2)nPR and Ph(H)C=C(CH2)nPH, respectively. Kinetic and mechanistic data for these processes exhibit parallels to, as well as distinct differences from, organolanthanide-mediated intramolecular hydroamination/cyclizations. The turnover-limiting step of the present catalytic cycle is insertion of the carbon-carbon unsaturation into the Ln-P bond, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [substrate] over approximately one half-life, with inhibition by heterocyclic product intruding at higher conversions. The catalyst resting state is likely a lanthanocene phosphine-phosphido complex, and dimeric [Cp′2YP(H)Ph]2 was isolated and cystallographically characterized. Lanthanide identity and ancillary ligand structure effects on rate and selectivity vary with substrate unsaturation: larger metal ions and more open ligand systems lead to higher turnover frequencies for phosphinoalkynes, and intermediate-sized metal ions with Cp′2 ligands lead to maximum turnover frequencies for phosphinoalkenes. Diastereoselectivity patterns also vary with substrate, lanthanide ion, and ancillary ligands. Similarities and differences in hydrophosphination vis-{\`a}-vis analogous organolanthanide-mediated hydroamination are enumerated.",
author = "Douglass, {M. R.} and Stern, {C. L.} and Marks, {Tobin J}",
year = "2001",
month = "10",
day = "24",
doi = "10.1021/ja010811i",
language = "English",
volume = "123",
pages = "10221--10238",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "42",

}

TY - JOUR

T1 - Intramolecular hydrophosphination/cyclization of phosphinoalkenes and phosphinoalkynes catalyzed by organolanthanides

T2 - Scope, selectivity, and mechanism

AU - Douglass, M. R.

AU - Stern, C. L.

AU - Marks, Tobin J

PY - 2001/10/24

Y1 - 2001/10/24

N2 - Organolanthanide complexes of the general type Cp′2LnE(TMS)2 (Cp′ = η/5-Me5C5; Ln = La, Sm, Y, Lu; E = CH, N; TMS = SiMe3) serve as effective precatalysts for the rapid intramolecular hydrophosphination/cyclization of the phosphinoalkenes and phosphinoalkynes RHP(CH2)nCH=CH2 (R = Ph, H; n = 3, 4) and H2P(CH2)nC≡C-Ph (n = 3, 4) to afford the corresponding heterocycles CH3CH(CH2)nPR and Ph(H)C=C(CH2)nPH, respectively. Kinetic and mechanistic data for these processes exhibit parallels to, as well as distinct differences from, organolanthanide-mediated intramolecular hydroamination/cyclizations. The turnover-limiting step of the present catalytic cycle is insertion of the carbon-carbon unsaturation into the Ln-P bond, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [substrate] over approximately one half-life, with inhibition by heterocyclic product intruding at higher conversions. The catalyst resting state is likely a lanthanocene phosphine-phosphido complex, and dimeric [Cp′2YP(H)Ph]2 was isolated and cystallographically characterized. Lanthanide identity and ancillary ligand structure effects on rate and selectivity vary with substrate unsaturation: larger metal ions and more open ligand systems lead to higher turnover frequencies for phosphinoalkynes, and intermediate-sized metal ions with Cp′2 ligands lead to maximum turnover frequencies for phosphinoalkenes. Diastereoselectivity patterns also vary with substrate, lanthanide ion, and ancillary ligands. Similarities and differences in hydrophosphination vis-à-vis analogous organolanthanide-mediated hydroamination are enumerated.

AB - Organolanthanide complexes of the general type Cp′2LnE(TMS)2 (Cp′ = η/5-Me5C5; Ln = La, Sm, Y, Lu; E = CH, N; TMS = SiMe3) serve as effective precatalysts for the rapid intramolecular hydrophosphination/cyclization of the phosphinoalkenes and phosphinoalkynes RHP(CH2)nCH=CH2 (R = Ph, H; n = 3, 4) and H2P(CH2)nC≡C-Ph (n = 3, 4) to afford the corresponding heterocycles CH3CH(CH2)nPR and Ph(H)C=C(CH2)nPH, respectively. Kinetic and mechanistic data for these processes exhibit parallels to, as well as distinct differences from, organolanthanide-mediated intramolecular hydroamination/cyclizations. The turnover-limiting step of the present catalytic cycle is insertion of the carbon-carbon unsaturation into the Ln-P bond, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [substrate] over approximately one half-life, with inhibition by heterocyclic product intruding at higher conversions. The catalyst resting state is likely a lanthanocene phosphine-phosphido complex, and dimeric [Cp′2YP(H)Ph]2 was isolated and cystallographically characterized. Lanthanide identity and ancillary ligand structure effects on rate and selectivity vary with substrate unsaturation: larger metal ions and more open ligand systems lead to higher turnover frequencies for phosphinoalkynes, and intermediate-sized metal ions with Cp′2 ligands lead to maximum turnover frequencies for phosphinoalkenes. Diastereoselectivity patterns also vary with substrate, lanthanide ion, and ancillary ligands. Similarities and differences in hydrophosphination vis-à-vis analogous organolanthanide-mediated hydroamination are enumerated.

UR - http://www.scopus.com/inward/record.url?scp=0035944472&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035944472&partnerID=8YFLogxK

U2 - 10.1021/ja010811i

DO - 10.1021/ja010811i

M3 - Article

VL - 123

SP - 10221

EP - 10238

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 42

ER -