Intrinsic Rashba coupling due to hydrogen bonding in DNA

S. Varela, B. Montañes, F. López, B. Berche, B. Guillot, V. Mujica, E. Medina

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We present an analytical model for the role of hydrogen bonding on the spin-orbit coupling of a model DNA molecule. Here, we analyze in detail the electric fields due to the polarization of the hydrogen bond on the DNA base pairs and derive, within a tight binding analytical band folding approach, an intrinsic Rashba coupling which should dictate the order of the spin active effects in the chiral-induced spin selectivity effect. The coupling found is ten times larger than the intrinsic coupling estimated previously and points out to the predominant role of hydrogen bonding in addition to chirality in the case of biological molecules. We expect similar dominant effects in oligopeptides, where the chiral structure is supported by hydrogen-bonding and bears on orbital carrying transport electrons.

Original languageEnglish
Article number125102
JournalJournal of Chemical Physics
Volume151
Issue number12
DOIs
Publication statusPublished - Sep 28 2019

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Intrinsic Rashba coupling due to hydrogen bonding in DNA'. Together they form a unique fingerprint.

  • Cite this

    Varela, S., Montañes, B., López, F., Berche, B., Guillot, B., Mujica, V., & Medina, E. (2019). Intrinsic Rashba coupling due to hydrogen bonding in DNA. Journal of Chemical Physics, 151(12), [125102]. https://doi.org/10.1063/1.5121025