Inverse design approach to hole doping in ternary oxides

Enhancing p-type conductivity in cobalt oxide spinels

J. D. Perkins, T. R. Paudel, A. Zakutayev, P. F. Ndione, P. A. Parilla, D. L. Young, S. Lany, D. S. Ginley, A. Zunger, N. H. Perry, Y. Tang, M. Grayson, Thomas O Mason, J. S. Bettinger, Y. Shi, M. F. Toney

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

Holes can be readily doped into small-gap semiconductors such as Si or GaAs, but corresponding p-type doping in wide-gap insulators, while maintaining transparency, has proven difficult. Here, by utilizing design principles distilled from theory with systematic measurements in the prototype A 2BO4 spinel Co2ZnO4, we formulate and test practical design rules for effective hole doping. Using these, we demonstrate a 20-fold increase in the hole density in Co2ZnO 4 due to extrinsic (Mg) doping and, ultimately, a factor of 104 increase for the inverse spinel Co2NiO4, the x = 1 end point of Ni-doped Co2Zn1-xNixO4.

Original languageEnglish
Article number205207
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number20
DOIs
Publication statusPublished - Nov 14 2011

Fingerprint

cobalt oxides
Oxides
Cobalt
Doping (additives)
conductivity
spinel
oxides
Transparency
prototypes
insulators
Semiconductor materials
cobalt oxide
spinell

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this

Inverse design approach to hole doping in ternary oxides : Enhancing p-type conductivity in cobalt oxide spinels. / Perkins, J. D.; Paudel, T. R.; Zakutayev, A.; Ndione, P. F.; Parilla, P. A.; Young, D. L.; Lany, S.; Ginley, D. S.; Zunger, A.; Perry, N. H.; Tang, Y.; Grayson, M.; Mason, Thomas O; Bettinger, J. S.; Shi, Y.; Toney, M. F.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 84, No. 20, 205207, 14.11.2011.

Research output: Contribution to journalArticle

Perkins, JD, Paudel, TR, Zakutayev, A, Ndione, PF, Parilla, PA, Young, DL, Lany, S, Ginley, DS, Zunger, A, Perry, NH, Tang, Y, Grayson, M, Mason, TO, Bettinger, JS, Shi, Y & Toney, MF 2011, 'Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels', Physical Review B - Condensed Matter and Materials Physics, vol. 84, no. 20, 205207. https://doi.org/10.1103/PhysRevB.84.205207
Perkins, J. D. ; Paudel, T. R. ; Zakutayev, A. ; Ndione, P. F. ; Parilla, P. A. ; Young, D. L. ; Lany, S. ; Ginley, D. S. ; Zunger, A. ; Perry, N. H. ; Tang, Y. ; Grayson, M. ; Mason, Thomas O ; Bettinger, J. S. ; Shi, Y. ; Toney, M. F. / Inverse design approach to hole doping in ternary oxides : Enhancing p-type conductivity in cobalt oxide spinels. In: Physical Review B - Condensed Matter and Materials Physics. 2011 ; Vol. 84, No. 20.
@article{7d0ed3a4cd87472d8e1da3bad87a2f07,
title = "Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels",
abstract = "Holes can be readily doped into small-gap semiconductors such as Si or GaAs, but corresponding p-type doping in wide-gap insulators, while maintaining transparency, has proven difficult. Here, by utilizing design principles distilled from theory with systematic measurements in the prototype A 2BO4 spinel Co2ZnO4, we formulate and test practical design rules for effective hole doping. Using these, we demonstrate a 20-fold increase in the hole density in Co2ZnO 4 due to extrinsic (Mg) doping and, ultimately, a factor of 104 increase for the inverse spinel Co2NiO4, the x = 1 end point of Ni-doped Co2Zn1-xNixO4.",
author = "Perkins, {J. D.} and Paudel, {T. R.} and A. Zakutayev and Ndione, {P. F.} and Parilla, {P. A.} and Young, {D. L.} and S. Lany and Ginley, {D. S.} and A. Zunger and Perry, {N. H.} and Y. Tang and M. Grayson and Mason, {Thomas O} and Bettinger, {J. S.} and Y. Shi and Toney, {M. F.}",
year = "2011",
month = "11",
day = "14",
doi = "10.1103/PhysRevB.84.205207",
language = "English",
volume = "84",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "20",

}

TY - JOUR

T1 - Inverse design approach to hole doping in ternary oxides

T2 - Enhancing p-type conductivity in cobalt oxide spinels

AU - Perkins, J. D.

AU - Paudel, T. R.

AU - Zakutayev, A.

AU - Ndione, P. F.

AU - Parilla, P. A.

AU - Young, D. L.

AU - Lany, S.

AU - Ginley, D. S.

AU - Zunger, A.

AU - Perry, N. H.

AU - Tang, Y.

AU - Grayson, M.

AU - Mason, Thomas O

AU - Bettinger, J. S.

AU - Shi, Y.

AU - Toney, M. F.

PY - 2011/11/14

Y1 - 2011/11/14

N2 - Holes can be readily doped into small-gap semiconductors such as Si or GaAs, but corresponding p-type doping in wide-gap insulators, while maintaining transparency, has proven difficult. Here, by utilizing design principles distilled from theory with systematic measurements in the prototype A 2BO4 spinel Co2ZnO4, we formulate and test practical design rules for effective hole doping. Using these, we demonstrate a 20-fold increase in the hole density in Co2ZnO 4 due to extrinsic (Mg) doping and, ultimately, a factor of 104 increase for the inverse spinel Co2NiO4, the x = 1 end point of Ni-doped Co2Zn1-xNixO4.

AB - Holes can be readily doped into small-gap semiconductors such as Si or GaAs, but corresponding p-type doping in wide-gap insulators, while maintaining transparency, has proven difficult. Here, by utilizing design principles distilled from theory with systematic measurements in the prototype A 2BO4 spinel Co2ZnO4, we formulate and test practical design rules for effective hole doping. Using these, we demonstrate a 20-fold increase in the hole density in Co2ZnO 4 due to extrinsic (Mg) doping and, ultimately, a factor of 104 increase for the inverse spinel Co2NiO4, the x = 1 end point of Ni-doped Co2Zn1-xNixO4.

UR - http://www.scopus.com/inward/record.url?scp=82655166243&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=82655166243&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.84.205207

DO - 10.1103/PhysRevB.84.205207

M3 - Article

VL - 84

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 20

M1 - 205207

ER -