TY - JOUR
T1 - Ionic Hydrogenation of Alkynes by HOTf and Cp(CO)3WH
AU - Luan, Li
AU - Song, Jeong Sup
AU - Bullock, R. Morris
PY - 1995/11/1
Y1 - 1995/11/1
N2 - Alkynes can be hydrogenated at room temperature by an ionic hydrogenation method using triflic acid (CF3SO3H) as the proton donor and a transition metal hydride (Cp(CO)3WH) as the hydride donor. Reaction of PhC≡CH with HOTf and Cp(CO)3WH gives ethylbenzene as the final product in high yield. Intermediates observed in this reaction are the vinyl triflate CH2=C(Ph)(OTf) and the geminal ditriflate Ph(CH3)C(OTf)2, which result from the addition of 1 or 2 equiv of HOTf to the C≡C triple bond of the alkyne. Hydrogenation of PhC≡CMe by HOTf and Cp(CO)3WH similarly produces propylbenzene as the ultimate product. Along with vinyl triflates, additional intermediates observed in this reaction were the cis and trans isomers of the β-methylstyrene complex [Cp(CO)3W-(η2-PhHC=CHCH3)]+[OTf]_. Hydrogenation of n-butylacetylene to n-hexane does occur upon reaction with HOTf/Cp(CO)3WH, but is very slow. In the absence of metal hydrides, 2-methyl-l-buten-3-yne reacts with HOTf to give the vinyl triflate CH2=CMeC(OTf)=CH2, but reaction with HOTf and Cp(CO)3WH gives Me2C=C(OTf)Me. The key characteristics required for the metal hydride used in these hydrogenations are the ability to donate hydride in the presence of strong acid, and the absence of rapid decomposition of the hydride through reaction with the strong acid. Cp(CO)3WH meets these requirements, but HSiEt3, while an effective hydride donor, is decomposed by HOTf on the time scale of these alkyne hydrogenation reactions.
AB - Alkynes can be hydrogenated at room temperature by an ionic hydrogenation method using triflic acid (CF3SO3H) as the proton donor and a transition metal hydride (Cp(CO)3WH) as the hydride donor. Reaction of PhC≡CH with HOTf and Cp(CO)3WH gives ethylbenzene as the final product in high yield. Intermediates observed in this reaction are the vinyl triflate CH2=C(Ph)(OTf) and the geminal ditriflate Ph(CH3)C(OTf)2, which result from the addition of 1 or 2 equiv of HOTf to the C≡C triple bond of the alkyne. Hydrogenation of PhC≡CMe by HOTf and Cp(CO)3WH similarly produces propylbenzene as the ultimate product. Along with vinyl triflates, additional intermediates observed in this reaction were the cis and trans isomers of the β-methylstyrene complex [Cp(CO)3W-(η2-PhHC=CHCH3)]+[OTf]_. Hydrogenation of n-butylacetylene to n-hexane does occur upon reaction with HOTf/Cp(CO)3WH, but is very slow. In the absence of metal hydrides, 2-methyl-l-buten-3-yne reacts with HOTf to give the vinyl triflate CH2=CMeC(OTf)=CH2, but reaction with HOTf and Cp(CO)3WH gives Me2C=C(OTf)Me. The key characteristics required for the metal hydride used in these hydrogenations are the ability to donate hydride in the presence of strong acid, and the absence of rapid decomposition of the hydride through reaction with the strong acid. Cp(CO)3WH meets these requirements, but HSiEt3, while an effective hydride donor, is decomposed by HOTf on the time scale of these alkyne hydrogenation reactions.
UR - http://www.scopus.com/inward/record.url?scp=0001650015&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001650015&partnerID=8YFLogxK
U2 - 10.1021/jo00127a023
DO - 10.1021/jo00127a023
M3 - Article
AN - SCOPUS:0001650015
VL - 60
SP - 7170
EP - 7176
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
SN - 0022-3263
IS - 22
ER -