TY - JOUR
T1 - Iron dicarbonyl complexes featuring bipyridine-based PNN pincer ligands with short interpyridine C-C bond lengths
T2 - Innocent or non-innocent ligand?
AU - Zell, Thomas
AU - Milko, Petr
AU - Fillman, Kathlyn L.
AU - Diskin-Posner, Yael
AU - Bendikov, Tatyana
AU - Iron, Mark A.
AU - Leitus, Gregory
AU - Ben-David, Yehoshoa
AU - Neidig, Michael L.
AU - Milstein, David
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014/4/7
Y1 - 2014/4/7
N2 - A series of iron dicarbonyl complexes with bipyridine-based PNN pincer ligands were synthesized and characterized by multinuclear NMR spectroscopy (1H, 13C, 15N, 31P), IR spectroscopy, cyclic voltammetry, 57Fe Mössbauer spectroscopy, XPS spectroscopy, and single-crystal X-ray diffraction. The complexes with the general formula [(R-PNN)Fe(CO)2] (5: R-PNN=tBu-PNN=6-[(di-tert- butylphosphino)methyl]-2,2′-bipyridine, 6: R-PNN=iPr-PNN=6- [(diisopropylphosphino)methyl]-2,2′-bipyridine, and 7: R-PNN=Ph-PNN=6-[(diphenylphosphino)methyl]-2,2′-bipyridine) feature differently P-substituted PNN pincer ligands. Complexes 5 and 6 were obtained by reduction of the corresponding dihalide complexes [(R-PNN)Fe(X)2] (1: R=tBu, X=Cl; 2: R=tBu, X=Br; 3: R=iPr, X=Cl; 4: R=iPr, X=Br) in the presence of CO. The analogous Ph-substituted complex 7 was synthesized by a reaction of the free ligand with iron pentacarbonyl. The low-spin complexes 5-7 (S=0) are diamagnetic and have distorted trigonal bipyramidal structures in solution, whereas in the solid state the geometries around the iron are best described as distorted square pyramidal. Compared to other structurally characterized complexes with these PNN ligands, shortened interpyridine C-C bonds of about 1.43 Å were measured. A comparison with known examples, theoretically described as metal complexes bearing bipyridine π-radical anions (bpy .-), suggests that the complexes can be described as FeI complexes with one electron antiferromagnetically coupled to the ligand-based radical anions. However, computational studies, at the NEVPT2/CASSCF level of theory, reveal that the shortening of the C-C bond is a result of extensive π-backbonding of the iron center into the antibonding orbital of the bpy unit. Hence, the description of the complexes as Fe 0 complexes with neutral bipyridine units is the favorable one. Innocent till proved guilty! Metrical parameters for the assignment of oxidation states of bipyridine ligands are challenged. A series of iron dicarbonyl complexes with bipyridine-based PNN pincer ligands were synthesized and fully characterized by various methods. Unusually short interpyridine C-C bonds were derived by X-ray diffraction (see scheme). The question if this is an effect of an intramolecular electron transfer or an effect of classical π-backbonding is addressed.
AB - A series of iron dicarbonyl complexes with bipyridine-based PNN pincer ligands were synthesized and characterized by multinuclear NMR spectroscopy (1H, 13C, 15N, 31P), IR spectroscopy, cyclic voltammetry, 57Fe Mössbauer spectroscopy, XPS spectroscopy, and single-crystal X-ray diffraction. The complexes with the general formula [(R-PNN)Fe(CO)2] (5: R-PNN=tBu-PNN=6-[(di-tert- butylphosphino)methyl]-2,2′-bipyridine, 6: R-PNN=iPr-PNN=6- [(diisopropylphosphino)methyl]-2,2′-bipyridine, and 7: R-PNN=Ph-PNN=6-[(diphenylphosphino)methyl]-2,2′-bipyridine) feature differently P-substituted PNN pincer ligands. Complexes 5 and 6 were obtained by reduction of the corresponding dihalide complexes [(R-PNN)Fe(X)2] (1: R=tBu, X=Cl; 2: R=tBu, X=Br; 3: R=iPr, X=Cl; 4: R=iPr, X=Br) in the presence of CO. The analogous Ph-substituted complex 7 was synthesized by a reaction of the free ligand with iron pentacarbonyl. The low-spin complexes 5-7 (S=0) are diamagnetic and have distorted trigonal bipyramidal structures in solution, whereas in the solid state the geometries around the iron are best described as distorted square pyramidal. Compared to other structurally characterized complexes with these PNN ligands, shortened interpyridine C-C bonds of about 1.43 Å were measured. A comparison with known examples, theoretically described as metal complexes bearing bipyridine π-radical anions (bpy .-), suggests that the complexes can be described as FeI complexes with one electron antiferromagnetically coupled to the ligand-based radical anions. However, computational studies, at the NEVPT2/CASSCF level of theory, reveal that the shortening of the C-C bond is a result of extensive π-backbonding of the iron center into the antibonding orbital of the bpy unit. Hence, the description of the complexes as Fe 0 complexes with neutral bipyridine units is the favorable one. Innocent till proved guilty! Metrical parameters for the assignment of oxidation states of bipyridine ligands are challenged. A series of iron dicarbonyl complexes with bipyridine-based PNN pincer ligands were synthesized and fully characterized by various methods. Unusually short interpyridine C-C bonds were derived by X-ray diffraction (see scheme). The question if this is an effect of an intramolecular electron transfer or an effect of classical π-backbonding is addressed.
KW - bipyridine
KW - iron
KW - pi interactions
KW - pincer ligands
KW - redox chemistry
UR - http://www.scopus.com/inward/record.url?scp=84897977678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897977678&partnerID=8YFLogxK
U2 - 10.1002/chem.201304631
DO - 10.1002/chem.201304631
M3 - Article
AN - SCOPUS:84897977678
VL - 20
SP - 4403
EP - 4413
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
SN - 0947-6539
IS - 15
ER -