TY - JOUR
T1 - Isolating the effects of the proton tunneling distance on protoncoupled electron transfer in a series of homologous tyrosine-base model compounds
AU - Glover, Starla D.
AU - Parada, Giovanny A.
AU - Markle, Todd F.
AU - Ott, Sascha
AU - Hammarström, Leif
PY - 2017/2/8
Y1 - 2017/2/8
N2 - The distance dependence of concerted proton-coupled electron transfer (PCET) reactions was probed in a series of three new compounds, where a phenol is covalently bridged by a 5, 6, or 7 membered carbocycle to the quinoline. The carbocycle bridge enforces the change in distance between the phenol oxygen (proton donor) and quinoline nitrogen (proton acceptor), dO•••N, giving rise to values ranging from 2.567 to 2.8487 Å, and resulting in calculated proton tunneling distances, r0, that span 0.719 to 1.244 Å. Not only does this series significantly extend the range of distances that has been previously accessible for experimental distance dependent PCET studies of synthetic model compounds, but it also greatly improves the isolation of dO•••N as a variable compared to earlier reports. Rates of PCET were determined by time-resolved optical spectroscopy with flash-quench generated [Ru(bpy)3]3+ and [Ru(dce)3]3+, where bpy = 2,2′-bipyridyl and dce = 4,4′-dicarboxyethylester-2,2′-bipyridyl. The rates increased as dO•••N decreased, as can be expected from a static proton tunneling model. An exponential attenuation of the PCET rate constant was found: kPCET(d) = kPCETexp[-β(d-d0)], with β ∼ 10 Å-1. The observed kinetic isotope effect (KIE = kH/kD) ranged from 1.2 to 1.4, where the KIE was observed to decrease slightly with increasing dO•••N. Both β and KIE values are significantly smaller than what is predicted by a static proton tunneling model. We conclude that vibrational compression of the tunneling distances, as well as higher vibronic transitions, that contribute to concerted proton coupled electron transfer must also be considered.
AB - The distance dependence of concerted proton-coupled electron transfer (PCET) reactions was probed in a series of three new compounds, where a phenol is covalently bridged by a 5, 6, or 7 membered carbocycle to the quinoline. The carbocycle bridge enforces the change in distance between the phenol oxygen (proton donor) and quinoline nitrogen (proton acceptor), dO•••N, giving rise to values ranging from 2.567 to 2.8487 Å, and resulting in calculated proton tunneling distances, r0, that span 0.719 to 1.244 Å. Not only does this series significantly extend the range of distances that has been previously accessible for experimental distance dependent PCET studies of synthetic model compounds, but it also greatly improves the isolation of dO•••N as a variable compared to earlier reports. Rates of PCET were determined by time-resolved optical spectroscopy with flash-quench generated [Ru(bpy)3]3+ and [Ru(dce)3]3+, where bpy = 2,2′-bipyridyl and dce = 4,4′-dicarboxyethylester-2,2′-bipyridyl. The rates increased as dO•••N decreased, as can be expected from a static proton tunneling model. An exponential attenuation of the PCET rate constant was found: kPCET(d) = kPCETexp[-β(d-d0)], with β ∼ 10 Å-1. The observed kinetic isotope effect (KIE = kH/kD) ranged from 1.2 to 1.4, where the KIE was observed to decrease slightly with increasing dO•••N. Both β and KIE values are significantly smaller than what is predicted by a static proton tunneling model. We conclude that vibrational compression of the tunneling distances, as well as higher vibronic transitions, that contribute to concerted proton coupled electron transfer must also be considered.
UR - http://www.scopus.com/inward/record.url?scp=85011961093&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011961093&partnerID=8YFLogxK
U2 - 10.1021/jacs.6b12531
DO - 10.1021/jacs.6b12531
M3 - Article
C2 - 28052668
AN - SCOPUS:85011961093
VL - 139
SP - 2090
EP - 2101
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 5
ER -