Isotopic studies of the proton-hydrogen molecule reaction

M. G. Holliday, James Muckerman, L. Friedman

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

The atomic-ion-molecule systems of protons or deuterons and isotopic hydrogen molecules have been the subject of an experimental study designed to provide data to be compared with recently reported classical trajectory calculations on an ab initia potential energy surface. Absolute cross sections (accurate to within an estimated error of ±20%) for the following atomic-ion exchange reactions D++H2→HD+H+, (1) H++D2→HD+D+, (2) D ++HD→D2+H+ (3) have been investigated in a tandem mass spectrometer system, with carefully calibrated geometry, as a function of collision energy. Endothermic charge-transfer processes D ++H2→HD++H, (4) D++D 2→D2++D, (5) D++HD→HD++D (6) →D2 ++H, (7) H++H2→ H2 ++H, (8) H++D2→HD ++D (9) →D2 ++H (10) have been observed, and their cross sections were determined as a function of collision energy. Energy distributions of the ionic species participating in these reactions were measured by application of appropriate retarding fields. The experimental results for atomic-ion exchange reactions [(1)-(3)] are not easily compared with theoretical cross sections because the latter were calculated above energy thresholds for endothermic charge-transfer reactions [Reactions (4)-(10)]. These processes were not considered in the theoretical treatment, though our results show that, where energetically possible, they indeed dominate the reactive collisions. The extent of the observed endothermic charge transfer was unexpected, but can be rationalized by postulating that very efficient translational to internal energy conversion occurs, followed by radiationless transition to a weakly bound or repulsive excited electronic state of H 3 +. This 1E′ state has been identified by a simple HÜckel calculation. Comparisons of energy distributions of product and reactant ions superficially indicate "complex formation" at relatively low collision energies and "direct reaction" at higher energies for atomic-ion exchange reactions [(l)-(3)]. The efficient transfer of kinetic to internal energy in the endothermic charge-transfer processes suggests complex formation mechanisms. This idea is further supported by isotopic abundance data. Although the energy distributions of atomicion exchange products above the endothermic charge-transfer threshold are consistent with a direct mechanism, it should be noted that the relative yield of atomic-ion products compared to molecular-ion products is small in this energy range. This is in no way inconsistent with trajectory studies and may indeed be present at lower energies where it would be effectively concealed. The absolute characterization of mechanism as "direct" or "complex formation" does not appear in the trajectory calculations nor is it suggested in our experiments. Spin-Orbit Coupling in Aromatic Hydrocarbons. Analysis of Nonradiative Transitions.

Original languageEnglish
Pages (from-to)1058-1072
Number of pages15
JournalJournal of Chemical Physics
Volume54
Issue number3
Publication statusPublished - 1971

Fingerprint

Protons
Charge transfer
Hydrogen
Molecules
protons
Ions
hydrogen
charge transfer
Ion exchange
Trajectories
molecules
energy distribution
ions
collisions
trajectories
products
energy
internal energy
Aromatic Hydrocarbons
Potential energy surfaces

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Isotopic studies of the proton-hydrogen molecule reaction. / Holliday, M. G.; Muckerman, James; Friedman, L.

In: Journal of Chemical Physics, Vol. 54, No. 3, 1971, p. 1058-1072.

Research output: Contribution to journalArticle

Holliday, MG, Muckerman, J & Friedman, L 1971, 'Isotopic studies of the proton-hydrogen molecule reaction', Journal of Chemical Physics, vol. 54, no. 3, pp. 1058-1072.
Holliday, M. G. ; Muckerman, James ; Friedman, L. / Isotopic studies of the proton-hydrogen molecule reaction. In: Journal of Chemical Physics. 1971 ; Vol. 54, No. 3. pp. 1058-1072.
@article{657f9733694241d28da000d62cac2d1b,
title = "Isotopic studies of the proton-hydrogen molecule reaction",
abstract = "The atomic-ion-molecule systems of protons or deuterons and isotopic hydrogen molecules have been the subject of an experimental study designed to provide data to be compared with recently reported classical trajectory calculations on an ab initia potential energy surface. Absolute cross sections (accurate to within an estimated error of ±20{\%}) for the following atomic-ion exchange reactions D++H2→HD+H+, (1) H++D2→HD+D+, (2) D ++HD→D2+H+ (3) have been investigated in a tandem mass spectrometer system, with carefully calibrated geometry, as a function of collision energy. Endothermic charge-transfer processes D ++H2→HD++H, (4) D++D 2→D2++D, (5) D++HD→HD++D (6) →D2 ++H, (7) H++H2→ H2 ++H, (8) H++D2→HD ++D (9) →D2 ++H (10) have been observed, and their cross sections were determined as a function of collision energy. Energy distributions of the ionic species participating in these reactions were measured by application of appropriate retarding fields. The experimental results for atomic-ion exchange reactions [(1)-(3)] are not easily compared with theoretical cross sections because the latter were calculated above energy thresholds for endothermic charge-transfer reactions [Reactions (4)-(10)]. These processes were not considered in the theoretical treatment, though our results show that, where energetically possible, they indeed dominate the reactive collisions. The extent of the observed endothermic charge transfer was unexpected, but can be rationalized by postulating that very efficient translational to internal energy conversion occurs, followed by radiationless transition to a weakly bound or repulsive excited electronic state of H 3 +. This 1E′ state has been identified by a simple H{\"U}ckel calculation. Comparisons of energy distributions of product and reactant ions superficially indicate {"}complex formation{"} at relatively low collision energies and {"}direct reaction{"} at higher energies for atomic-ion exchange reactions [(l)-(3)]. The efficient transfer of kinetic to internal energy in the endothermic charge-transfer processes suggests complex formation mechanisms. This idea is further supported by isotopic abundance data. Although the energy distributions of atomicion exchange products above the endothermic charge-transfer threshold are consistent with a direct mechanism, it should be noted that the relative yield of atomic-ion products compared to molecular-ion products is small in this energy range. This is in no way inconsistent with trajectory studies and may indeed be present at lower energies where it would be effectively concealed. The absolute characterization of mechanism as {"}direct{"} or {"}complex formation{"} does not appear in the trajectory calculations nor is it suggested in our experiments. Spin-Orbit Coupling in Aromatic Hydrocarbons. Analysis of Nonradiative Transitions.",
author = "Holliday, {M. G.} and James Muckerman and L. Friedman",
year = "1971",
language = "English",
volume = "54",
pages = "1058--1072",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "3",

}

TY - JOUR

T1 - Isotopic studies of the proton-hydrogen molecule reaction

AU - Holliday, M. G.

AU - Muckerman, James

AU - Friedman, L.

PY - 1971

Y1 - 1971

N2 - The atomic-ion-molecule systems of protons or deuterons and isotopic hydrogen molecules have been the subject of an experimental study designed to provide data to be compared with recently reported classical trajectory calculations on an ab initia potential energy surface. Absolute cross sections (accurate to within an estimated error of ±20%) for the following atomic-ion exchange reactions D++H2→HD+H+, (1) H++D2→HD+D+, (2) D ++HD→D2+H+ (3) have been investigated in a tandem mass spectrometer system, with carefully calibrated geometry, as a function of collision energy. Endothermic charge-transfer processes D ++H2→HD++H, (4) D++D 2→D2++D, (5) D++HD→HD++D (6) →D2 ++H, (7) H++H2→ H2 ++H, (8) H++D2→HD ++D (9) →D2 ++H (10) have been observed, and their cross sections were determined as a function of collision energy. Energy distributions of the ionic species participating in these reactions were measured by application of appropriate retarding fields. The experimental results for atomic-ion exchange reactions [(1)-(3)] are not easily compared with theoretical cross sections because the latter were calculated above energy thresholds for endothermic charge-transfer reactions [Reactions (4)-(10)]. These processes were not considered in the theoretical treatment, though our results show that, where energetically possible, they indeed dominate the reactive collisions. The extent of the observed endothermic charge transfer was unexpected, but can be rationalized by postulating that very efficient translational to internal energy conversion occurs, followed by radiationless transition to a weakly bound or repulsive excited electronic state of H 3 +. This 1E′ state has been identified by a simple HÜckel calculation. Comparisons of energy distributions of product and reactant ions superficially indicate "complex formation" at relatively low collision energies and "direct reaction" at higher energies for atomic-ion exchange reactions [(l)-(3)]. The efficient transfer of kinetic to internal energy in the endothermic charge-transfer processes suggests complex formation mechanisms. This idea is further supported by isotopic abundance data. Although the energy distributions of atomicion exchange products above the endothermic charge-transfer threshold are consistent with a direct mechanism, it should be noted that the relative yield of atomic-ion products compared to molecular-ion products is small in this energy range. This is in no way inconsistent with trajectory studies and may indeed be present at lower energies where it would be effectively concealed. The absolute characterization of mechanism as "direct" or "complex formation" does not appear in the trajectory calculations nor is it suggested in our experiments. Spin-Orbit Coupling in Aromatic Hydrocarbons. Analysis of Nonradiative Transitions.

AB - The atomic-ion-molecule systems of protons or deuterons and isotopic hydrogen molecules have been the subject of an experimental study designed to provide data to be compared with recently reported classical trajectory calculations on an ab initia potential energy surface. Absolute cross sections (accurate to within an estimated error of ±20%) for the following atomic-ion exchange reactions D++H2→HD+H+, (1) H++D2→HD+D+, (2) D ++HD→D2+H+ (3) have been investigated in a tandem mass spectrometer system, with carefully calibrated geometry, as a function of collision energy. Endothermic charge-transfer processes D ++H2→HD++H, (4) D++D 2→D2++D, (5) D++HD→HD++D (6) →D2 ++H, (7) H++H2→ H2 ++H, (8) H++D2→HD ++D (9) →D2 ++H (10) have been observed, and their cross sections were determined as a function of collision energy. Energy distributions of the ionic species participating in these reactions were measured by application of appropriate retarding fields. The experimental results for atomic-ion exchange reactions [(1)-(3)] are not easily compared with theoretical cross sections because the latter were calculated above energy thresholds for endothermic charge-transfer reactions [Reactions (4)-(10)]. These processes were not considered in the theoretical treatment, though our results show that, where energetically possible, they indeed dominate the reactive collisions. The extent of the observed endothermic charge transfer was unexpected, but can be rationalized by postulating that very efficient translational to internal energy conversion occurs, followed by radiationless transition to a weakly bound or repulsive excited electronic state of H 3 +. This 1E′ state has been identified by a simple HÜckel calculation. Comparisons of energy distributions of product and reactant ions superficially indicate "complex formation" at relatively low collision energies and "direct reaction" at higher energies for atomic-ion exchange reactions [(l)-(3)]. The efficient transfer of kinetic to internal energy in the endothermic charge-transfer processes suggests complex formation mechanisms. This idea is further supported by isotopic abundance data. Although the energy distributions of atomicion exchange products above the endothermic charge-transfer threshold are consistent with a direct mechanism, it should be noted that the relative yield of atomic-ion products compared to molecular-ion products is small in this energy range. This is in no way inconsistent with trajectory studies and may indeed be present at lower energies where it would be effectively concealed. The absolute characterization of mechanism as "direct" or "complex formation" does not appear in the trajectory calculations nor is it suggested in our experiments. Spin-Orbit Coupling in Aromatic Hydrocarbons. Analysis of Nonradiative Transitions.

UR - http://www.scopus.com/inward/record.url?scp=0000618317&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000618317&partnerID=8YFLogxK

M3 - Article

VL - 54

SP - 1058

EP - 1072

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 3

ER -