Abstract
The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
Original language | English |
---|---|
Pages (from-to) | 270-274 |
Number of pages | 5 |
Journal | Nature nanotechnology |
Volume | 3 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 1 2008 |
ASJC Scopus subject areas
- Bioengineering
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- Materials Science(all)
- Condensed Matter Physics
- Electrical and Electronic Engineering