Layered cuprates

P. A. Salvador, K. Otzschi, H. Zhang, J. R. Mawdsley, K. B. Greenwood, B. M. Dabrowski, L. D. Marks, Thomas O Mason, Kenneth R Poeppelmeier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


Layered copper-oxide superconductors exhibit the highest critical transition temperatures of any materials. Yet all of the known double perovskites A′A″B′B″O6 containing copper have a random or rock salt distribution of the B cations with the exception of the unique layered arrangement found in La2CuSnO6. Only the layered arrangement contains the CuO22- planes which are necessary for high-temperature superconductivity. The occurrence of layered or two dimensional structures increases markedly when vacancies are introduced on the oxygen sublattice, as evidenced in Ln2AEmCu2TimO5+3m (Ln = lanthanide, Y: AE = Ba, Ca: 2≤m≤4). Similarities among oxygen-deficient structures, especially those with two-dimensional solid-state features, are discussed. Combined conductivity and thermopower analysis are presented to elucidate their unique internal chemistry, defect structure, and conduction parameters. In particular, data for La2-xSrxCuSnO6 are presented and related to the crystal chemistry of the copper-oxygen layer. These data are compared with La2Ba2Cu2Sn2O11 and La2Ba2Cu2Ti2O11 to illustrate the significance of oxygen vacancies on the properties of the copper oxygen planes. New layered cuprates are discussed including the mixed A-site stoichiometries Ln′Ln″AEmCu2TimO5+3m (Ln = lanthanide, Y: AE = Ba, Ca: 2≤m≤4) which contain the smaller lanthanide (Ln″) ordered between the closely spaced, facing sheets of Cu-O square pyramids.

Original languageEnglish
Title of host publicationMaterials Research Society Symposium - Proceedings
PublisherMaterials Research Society
Number of pages12
Publication statusPublished - 1997
EventProceedings of the 1996 MRS Fall Symposium - Boston, MA, USA
Duration: Dec 2 1996Dec 5 1996


OtherProceedings of the 1996 MRS Fall Symposium
CityBoston, MA, USA

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Fingerprint Dive into the research topics of 'Layered cuprates'. Together they form a unique fingerprint.

Cite this