Laying the foundation for nanoscience and nanotechnology with an introductory module for high school students

Valerie Maynard, Matthew Hsu, Katherine Chen, Robert P. H. Chang

Research output: Contribution to journalConference article

1 Citation (Scopus)

Abstract

In response to the need to create a skilled workforce in nanotechnology and to excite young students with the wonders and potentials of science, the National Center for Learning and Teaching in Nanoscale Science and Engineering, is developing educational materials for grades 7-16. Learning theory and cutting-edge research are used in the development of modules on nanoscience and nanotechnology. This paper describes the rationale for such materials and describes an introductory module in which students are lead through a series of inquiry-based and hands-on activities, which lead to a design project. Its goal is to teach an underlying principle in nanoscience and nanotechnology-the significance of the surface-area-to-volume ratio as objects get very small. The first section of the module investigates how the physical form of a material can influence the degree to which an object interacts with its environment. Different forms of different materials (steel, superabsorbent polymer, and sugar) are investigated as a function of dimensionality and size. The second section is centered on math tools needed to express very small quantities, viz., powers of 10 and scaling, and we intend that students get a feel for how small "nano" is. Shape and size effects on surface areas and volumes are explored in the third section. Graphs illustrate how the surface area to volume ratio changes with size. Consequences of such a trend are discussed in readings about nature and new technologies. The culminating event is an open-ended design project that incorporates the concepts from the previous activities and facilitates engineering design skills. Preliminary field testing has yielded both qualitative and statistical results.

Original languageEnglish
JournalASEE Annual Conference and Exposition, Conference Proceedings
Publication statusPublished - Jan 1 2006
Event113th Annual ASEE Conference and Exposition, 2006 - Chicago, IL, United States
Duration: Jun 18 2006Jun 21 2006

Fingerprint

Nanoscience
Nanotechnology
Students
Sugars
Teaching
Steel
Testing
Polymers

ASJC Scopus subject areas

  • Engineering(all)

Cite this

Laying the foundation for nanoscience and nanotechnology with an introductory module for high school students. / Maynard, Valerie; Hsu, Matthew; Chen, Katherine; Chang, Robert P. H.

In: ASEE Annual Conference and Exposition, Conference Proceedings, 01.01.2006.

Research output: Contribution to journalConference article

@article{d4e62f273cb142f5ae71376b5ca24915,
title = "Laying the foundation for nanoscience and nanotechnology with an introductory module for high school students",
abstract = "In response to the need to create a skilled workforce in nanotechnology and to excite young students with the wonders and potentials of science, the National Center for Learning and Teaching in Nanoscale Science and Engineering, is developing educational materials for grades 7-16. Learning theory and cutting-edge research are used in the development of modules on nanoscience and nanotechnology. This paper describes the rationale for such materials and describes an introductory module in which students are lead through a series of inquiry-based and hands-on activities, which lead to a design project. Its goal is to teach an underlying principle in nanoscience and nanotechnology-the significance of the surface-area-to-volume ratio as objects get very small. The first section of the module investigates how the physical form of a material can influence the degree to which an object interacts with its environment. Different forms of different materials (steel, superabsorbent polymer, and sugar) are investigated as a function of dimensionality and size. The second section is centered on math tools needed to express very small quantities, viz., powers of 10 and scaling, and we intend that students get a feel for how small {"}nano{"} is. Shape and size effects on surface areas and volumes are explored in the third section. Graphs illustrate how the surface area to volume ratio changes with size. Consequences of such a trend are discussed in readings about nature and new technologies. The culminating event is an open-ended design project that incorporates the concepts from the previous activities and facilitates engineering design skills. Preliminary field testing has yielded both qualitative and statistical results.",
author = "Valerie Maynard and Matthew Hsu and Katherine Chen and Chang, {Robert P. H.}",
year = "2006",
month = "1",
day = "1",
language = "English",
journal = "ASEE Annual Conference and Exposition, Conference Proceedings",
issn = "2153-5965",

}

TY - JOUR

T1 - Laying the foundation for nanoscience and nanotechnology with an introductory module for high school students

AU - Maynard, Valerie

AU - Hsu, Matthew

AU - Chen, Katherine

AU - Chang, Robert P. H.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - In response to the need to create a skilled workforce in nanotechnology and to excite young students with the wonders and potentials of science, the National Center for Learning and Teaching in Nanoscale Science and Engineering, is developing educational materials for grades 7-16. Learning theory and cutting-edge research are used in the development of modules on nanoscience and nanotechnology. This paper describes the rationale for such materials and describes an introductory module in which students are lead through a series of inquiry-based and hands-on activities, which lead to a design project. Its goal is to teach an underlying principle in nanoscience and nanotechnology-the significance of the surface-area-to-volume ratio as objects get very small. The first section of the module investigates how the physical form of a material can influence the degree to which an object interacts with its environment. Different forms of different materials (steel, superabsorbent polymer, and sugar) are investigated as a function of dimensionality and size. The second section is centered on math tools needed to express very small quantities, viz., powers of 10 and scaling, and we intend that students get a feel for how small "nano" is. Shape and size effects on surface areas and volumes are explored in the third section. Graphs illustrate how the surface area to volume ratio changes with size. Consequences of such a trend are discussed in readings about nature and new technologies. The culminating event is an open-ended design project that incorporates the concepts from the previous activities and facilitates engineering design skills. Preliminary field testing has yielded both qualitative and statistical results.

AB - In response to the need to create a skilled workforce in nanotechnology and to excite young students with the wonders and potentials of science, the National Center for Learning and Teaching in Nanoscale Science and Engineering, is developing educational materials for grades 7-16. Learning theory and cutting-edge research are used in the development of modules on nanoscience and nanotechnology. This paper describes the rationale for such materials and describes an introductory module in which students are lead through a series of inquiry-based and hands-on activities, which lead to a design project. Its goal is to teach an underlying principle in nanoscience and nanotechnology-the significance of the surface-area-to-volume ratio as objects get very small. The first section of the module investigates how the physical form of a material can influence the degree to which an object interacts with its environment. Different forms of different materials (steel, superabsorbent polymer, and sugar) are investigated as a function of dimensionality and size. The second section is centered on math tools needed to express very small quantities, viz., powers of 10 and scaling, and we intend that students get a feel for how small "nano" is. Shape and size effects on surface areas and volumes are explored in the third section. Graphs illustrate how the surface area to volume ratio changes with size. Consequences of such a trend are discussed in readings about nature and new technologies. The culminating event is an open-ended design project that incorporates the concepts from the previous activities and facilitates engineering design skills. Preliminary field testing has yielded both qualitative and statistical results.

UR - http://www.scopus.com/inward/record.url?scp=85029070710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029070710&partnerID=8YFLogxK

M3 - Conference article

JO - ASEE Annual Conference and Exposition, Conference Proceedings

JF - ASEE Annual Conference and Exposition, Conference Proceedings

SN - 2153-5965

ER -