Linearized augmented plane-wave method for the electronic band structure of thin films

H. Krakauer, M. Posternak, Arthur J Freeman

Research output: Contribution to journalArticle

267 Citations (Scopus)

Abstract

We present a new method for treating the electronic structure of thin films which is based on a generalization of the bulk linearized augmented-plane-wave (LAPW) method. This method avoids using the slab-superlattice geometry and combines the advantages of energy-independent muffin-tin Hamiltonian methods [fast root evaluation and rapid convergence for d-band metals as well as for nearly-free-electron (NFE) crystals] with the simple matrix element determination of the original augmented plane-wave (APW) method. As in the bulk LAPW method, the asymptote problem of the APW method is avoided, and the basis functions are everywhere continuous and differentiable. In addition, the film LAPW method retains such desirable features of the APW method as the ability to treat general potentials with no shape approximations, the ease with which relativistic effects can be included, and the fact that the basis size does not increase substantially for heavier elements. As a first application and test of the method, non-self-consistent calculations are performed in the local-density approximation for exchange and correlation and with the one-electron potential constructed from a superposition of atomic charge densities. A semirelativistic formulation is employed in which the Dirac equation is solved in the limit of zero spin-orbit coupling inside the muffin-tin spheres. Results are reported for up to five atomic layer thin films (slabs) of the transition metals Fe, Co, Ni, and Cu and a nine-layer film of the NFE metal Al. The results are in generally good agreement with other theoretical calculations. Some trends in the transition-metal band structures are discussed. A surface-state surface-resonance band for Al(001) is found to completely account for and clarify behavior observed in very recent photoemission measurements.

Original languageEnglish
Pages (from-to)1706-1719
Number of pages14
JournalPhysical Review B
Volume19
Issue number4
DOIs
Publication statusPublished - 1979

Fingerprint

Band structure
plane waves
Thin films
thin films
electronics
Tin
free electrons
Transition metals
Electrons
tin
slabs
Metals
transition metals
Hamiltonians
Local density approximation
asymptotes
Surface states
Photoemission
heavy elements
relativistic effects

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Linearized augmented plane-wave method for the electronic band structure of thin films. / Krakauer, H.; Posternak, M.; Freeman, Arthur J.

In: Physical Review B, Vol. 19, No. 4, 1979, p. 1706-1719.

Research output: Contribution to journalArticle

@article{aece401fc79a430698d66d45f32fc0ee,
title = "Linearized augmented plane-wave method for the electronic band structure of thin films",
abstract = "We present a new method for treating the electronic structure of thin films which is based on a generalization of the bulk linearized augmented-plane-wave (LAPW) method. This method avoids using the slab-superlattice geometry and combines the advantages of energy-independent muffin-tin Hamiltonian methods [fast root evaluation and rapid convergence for d-band metals as well as for nearly-free-electron (NFE) crystals] with the simple matrix element determination of the original augmented plane-wave (APW) method. As in the bulk LAPW method, the asymptote problem of the APW method is avoided, and the basis functions are everywhere continuous and differentiable. In addition, the film LAPW method retains such desirable features of the APW method as the ability to treat general potentials with no shape approximations, the ease with which relativistic effects can be included, and the fact that the basis size does not increase substantially for heavier elements. As a first application and test of the method, non-self-consistent calculations are performed in the local-density approximation for exchange and correlation and with the one-electron potential constructed from a superposition of atomic charge densities. A semirelativistic formulation is employed in which the Dirac equation is solved in the limit of zero spin-orbit coupling inside the muffin-tin spheres. Results are reported for up to five atomic layer thin films (slabs) of the transition metals Fe, Co, Ni, and Cu and a nine-layer film of the NFE metal Al. The results are in generally good agreement with other theoretical calculations. Some trends in the transition-metal band structures are discussed. A surface-state surface-resonance band for Al(001) is found to completely account for and clarify behavior observed in very recent photoemission measurements.",
author = "H. Krakauer and M. Posternak and Freeman, {Arthur J}",
year = "1979",
doi = "10.1103/PhysRevB.19.1706",
language = "English",
volume = "19",
pages = "1706--1719",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "4",

}

TY - JOUR

T1 - Linearized augmented plane-wave method for the electronic band structure of thin films

AU - Krakauer, H.

AU - Posternak, M.

AU - Freeman, Arthur J

PY - 1979

Y1 - 1979

N2 - We present a new method for treating the electronic structure of thin films which is based on a generalization of the bulk linearized augmented-plane-wave (LAPW) method. This method avoids using the slab-superlattice geometry and combines the advantages of energy-independent muffin-tin Hamiltonian methods [fast root evaluation and rapid convergence for d-band metals as well as for nearly-free-electron (NFE) crystals] with the simple matrix element determination of the original augmented plane-wave (APW) method. As in the bulk LAPW method, the asymptote problem of the APW method is avoided, and the basis functions are everywhere continuous and differentiable. In addition, the film LAPW method retains such desirable features of the APW method as the ability to treat general potentials with no shape approximations, the ease with which relativistic effects can be included, and the fact that the basis size does not increase substantially for heavier elements. As a first application and test of the method, non-self-consistent calculations are performed in the local-density approximation for exchange and correlation and with the one-electron potential constructed from a superposition of atomic charge densities. A semirelativistic formulation is employed in which the Dirac equation is solved in the limit of zero spin-orbit coupling inside the muffin-tin spheres. Results are reported for up to five atomic layer thin films (slabs) of the transition metals Fe, Co, Ni, and Cu and a nine-layer film of the NFE metal Al. The results are in generally good agreement with other theoretical calculations. Some trends in the transition-metal band structures are discussed. A surface-state surface-resonance band for Al(001) is found to completely account for and clarify behavior observed in very recent photoemission measurements.

AB - We present a new method for treating the electronic structure of thin films which is based on a generalization of the bulk linearized augmented-plane-wave (LAPW) method. This method avoids using the slab-superlattice geometry and combines the advantages of energy-independent muffin-tin Hamiltonian methods [fast root evaluation and rapid convergence for d-band metals as well as for nearly-free-electron (NFE) crystals] with the simple matrix element determination of the original augmented plane-wave (APW) method. As in the bulk LAPW method, the asymptote problem of the APW method is avoided, and the basis functions are everywhere continuous and differentiable. In addition, the film LAPW method retains such desirable features of the APW method as the ability to treat general potentials with no shape approximations, the ease with which relativistic effects can be included, and the fact that the basis size does not increase substantially for heavier elements. As a first application and test of the method, non-self-consistent calculations are performed in the local-density approximation for exchange and correlation and with the one-electron potential constructed from a superposition of atomic charge densities. A semirelativistic formulation is employed in which the Dirac equation is solved in the limit of zero spin-orbit coupling inside the muffin-tin spheres. Results are reported for up to five atomic layer thin films (slabs) of the transition metals Fe, Co, Ni, and Cu and a nine-layer film of the NFE metal Al. The results are in generally good agreement with other theoretical calculations. Some trends in the transition-metal band structures are discussed. A surface-state surface-resonance band for Al(001) is found to completely account for and clarify behavior observed in very recent photoemission measurements.

UR - http://www.scopus.com/inward/record.url?scp=0001597070&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001597070&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.19.1706

DO - 10.1103/PhysRevB.19.1706

M3 - Article

AN - SCOPUS:0001597070

VL - 19

SP - 1706

EP - 1719

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 4

ER -