TY - JOUR
T1 - Location of Chlorophyllz in Photosystem II
AU - Koulougliotis, Dionysios
AU - Innes, Jennifer B.
AU - Brudvig, Gary W.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1994/10/1
Y1 - 1994/10/1
N2 - Saturation-recovery and progressive microwave power saturation EPR spectroscopies have been used to probe the location of the chlorophyllz+ (Chlz+) radical species in Mn-depleted photosystem II (PSII). The spin-lattice relaxation transients of Chlz+ were non-single-exponential due to a dipole-dipole interaction with one of the other paramagnetic centers in PSII. Measurements on CN--treated, Mn-depleted PSII membrane samples, in which the non-heme Fe(II) is converted into its low-spin, diamagnetic form, confirmed that the non-heme Fe(II) caused the dipolar relaxation enhancement of Chlz+. The saturation-recovery EPR data were fit to a dipolar model [Hirsh, D. J., Beck, W. F., Innes, J. B., & Brudvig, G. W. (1992) Biochemistry 31, 532] which takes into account the isotropic (scalar) and orientationdependent (dipolar) contributions to the spin-lattice relaxation of the radical. The temperature dependence of the dipolar rate constants of Chlz+was identical to the temperature dependencies recently observed for the stable tyrosine radical, Yd•, and the special pair bacteriochlorophyll radical, (BChla)2+, in PSII and in reaction centers from Rhodobacter sphaeroides, respectively. Because the non-heme Fe(II) is known to cause a dipolar relaxation enhancement of the radicals in both of the latter cases, this result provides further evidence that the non-heme Fe(II) causes the dipolar relaxation enhancement of Chlz+ and, moreover, demonstrates that the magnetic properties of the non-heme Fe(II) in PSII and in reaction centers from Rhodobacter sphaeroides are very similar. By using the known Fe(II)-(BChla)2+ distance for calibration, we estimate the Fe(II)-Chlz+ distance to be 39.5 ± 2.5 Å. The theory of dipolar relaxation enhancement of a free radical caused by exogenous Dy3+ complexes [Innes, J. B., & Brudvig, G. W. (1989) Biochemistry 28, 1116] has also been applied to determine the location of Chlz+ relative to the PSII protein surfaces. Chlz+ was found to be located at approximately equal distances from both the luminal and stromal protein surfaces in extrinsic polypeptide-depleted PSII membranes. These results provide the first direct evidence against the assignment of Chlz to a Chi monomer analogous to the “voyeur” BChl in the bacterial reaction center and point to histidines-118 in the DI and D2 proteins as potential ligands of Chlz.
AB - Saturation-recovery and progressive microwave power saturation EPR spectroscopies have been used to probe the location of the chlorophyllz+ (Chlz+) radical species in Mn-depleted photosystem II (PSII). The spin-lattice relaxation transients of Chlz+ were non-single-exponential due to a dipole-dipole interaction with one of the other paramagnetic centers in PSII. Measurements on CN--treated, Mn-depleted PSII membrane samples, in which the non-heme Fe(II) is converted into its low-spin, diamagnetic form, confirmed that the non-heme Fe(II) caused the dipolar relaxation enhancement of Chlz+. The saturation-recovery EPR data were fit to a dipolar model [Hirsh, D. J., Beck, W. F., Innes, J. B., & Brudvig, G. W. (1992) Biochemistry 31, 532] which takes into account the isotropic (scalar) and orientationdependent (dipolar) contributions to the spin-lattice relaxation of the radical. The temperature dependence of the dipolar rate constants of Chlz+was identical to the temperature dependencies recently observed for the stable tyrosine radical, Yd•, and the special pair bacteriochlorophyll radical, (BChla)2+, in PSII and in reaction centers from Rhodobacter sphaeroides, respectively. Because the non-heme Fe(II) is known to cause a dipolar relaxation enhancement of the radicals in both of the latter cases, this result provides further evidence that the non-heme Fe(II) causes the dipolar relaxation enhancement of Chlz+ and, moreover, demonstrates that the magnetic properties of the non-heme Fe(II) in PSII and in reaction centers from Rhodobacter sphaeroides are very similar. By using the known Fe(II)-(BChla)2+ distance for calibration, we estimate the Fe(II)-Chlz+ distance to be 39.5 ± 2.5 Å. The theory of dipolar relaxation enhancement of a free radical caused by exogenous Dy3+ complexes [Innes, J. B., & Brudvig, G. W. (1989) Biochemistry 28, 1116] has also been applied to determine the location of Chlz+ relative to the PSII protein surfaces. Chlz+ was found to be located at approximately equal distances from both the luminal and stromal protein surfaces in extrinsic polypeptide-depleted PSII membranes. These results provide the first direct evidence against the assignment of Chlz to a Chi monomer analogous to the “voyeur” BChl in the bacterial reaction center and point to histidines-118 in the DI and D2 proteins as potential ligands of Chlz.
UR - http://www.scopus.com/inward/record.url?scp=0028172825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028172825&partnerID=8YFLogxK
U2 - 10.1021/bi00205a018
DO - 10.1021/bi00205a018
M3 - Article
C2 - 7918399
AN - SCOPUS:0028172825
VL - 33
SP - 11814
EP - 11822
JO - Biochemistry
JF - Biochemistry
SN - 0006-2960
IS - 39
ER -