Low-Temperature Atomic Layer Deposition of MoS2 Films

Titel Jurca, Michael J. Moody, Alex Henning, Jonathan D. Emery, Binghao Wang, Jeffrey M. Tan, Tracy L. Lohr, Lincoln J. Lauhon, Tobin J Marks

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Wet chemical screening reveals the very high reactivity of Mo(NMe2)4 with H2S for the low-temperature synthesis of MoS2. This observation motivated an investigation of Mo(NMe2)4 as a volatile precursor for the atomic layer deposition (ALD) of MoS2 thin films. Herein we report that Mo(NMe2)4 enables MoS2 film growth at record low temperatures—as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures.

Original languageEnglish
Pages (from-to)4991-4995
Number of pages5
JournalAngewandte Chemie - International Edition
Volume56
Issue number18
DOIs
Publication statusPublished - Apr 24 2017

Fingerprint

Atomic layer deposition
Growth temperature
Amorphous films
Film growth
Screening
Annealing
Fabrication
Thin films
Temperature

Keywords

  • atomic layer deposition
  • low-temperature film growth
  • metal–organic precursors
  • molybdenum disulfide

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Cite this

Jurca, T., Moody, M. J., Henning, A., Emery, J. D., Wang, B., Tan, J. M., ... Marks, T. J. (2017). Low-Temperature Atomic Layer Deposition of MoS2 Films. Angewandte Chemie - International Edition, 56(18), 4991-4995. https://doi.org/10.1002/anie.201611838

Low-Temperature Atomic Layer Deposition of MoS2 Films. / Jurca, Titel; Moody, Michael J.; Henning, Alex; Emery, Jonathan D.; Wang, Binghao; Tan, Jeffrey M.; Lohr, Tracy L.; Lauhon, Lincoln J.; Marks, Tobin J.

In: Angewandte Chemie - International Edition, Vol. 56, No. 18, 24.04.2017, p. 4991-4995.

Research output: Contribution to journalArticle

Jurca, T, Moody, MJ, Henning, A, Emery, JD, Wang, B, Tan, JM, Lohr, TL, Lauhon, LJ & Marks, TJ 2017, 'Low-Temperature Atomic Layer Deposition of MoS2 Films', Angewandte Chemie - International Edition, vol. 56, no. 18, pp. 4991-4995. https://doi.org/10.1002/anie.201611838
Jurca T, Moody MJ, Henning A, Emery JD, Wang B, Tan JM et al. Low-Temperature Atomic Layer Deposition of MoS2 Films. Angewandte Chemie - International Edition. 2017 Apr 24;56(18):4991-4995. https://doi.org/10.1002/anie.201611838
Jurca, Titel ; Moody, Michael J. ; Henning, Alex ; Emery, Jonathan D. ; Wang, Binghao ; Tan, Jeffrey M. ; Lohr, Tracy L. ; Lauhon, Lincoln J. ; Marks, Tobin J. / Low-Temperature Atomic Layer Deposition of MoS2 Films. In: Angewandte Chemie - International Edition. 2017 ; Vol. 56, No. 18. pp. 4991-4995.
@article{99fbda03b28946458928309cf9da45fe,
title = "Low-Temperature Atomic Layer Deposition of MoS2 Films",
abstract = "Wet chemical screening reveals the very high reactivity of Mo(NMe2)4 with H2S for the low-temperature synthesis of MoS2. This observation motivated an investigation of Mo(NMe2)4 as a volatile precursor for the atomic layer deposition (ALD) of MoS2 thin films. Herein we report that Mo(NMe2)4 enables MoS2 film growth at record low temperatures—as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures.",
keywords = "atomic layer deposition, low-temperature film growth, metal–organic precursors, molybdenum disulfide",
author = "Titel Jurca and Moody, {Michael J.} and Alex Henning and Emery, {Jonathan D.} and Binghao Wang and Tan, {Jeffrey M.} and Lohr, {Tracy L.} and Lauhon, {Lincoln J.} and Marks, {Tobin J}",
year = "2017",
month = "4",
day = "24",
doi = "10.1002/anie.201611838",
language = "English",
volume = "56",
pages = "4991--4995",
journal = "Angewandte Chemie - International Edition",
issn = "1433-7851",
publisher = "John Wiley and Sons Ltd",
number = "18",

}

TY - JOUR

T1 - Low-Temperature Atomic Layer Deposition of MoS2 Films

AU - Jurca, Titel

AU - Moody, Michael J.

AU - Henning, Alex

AU - Emery, Jonathan D.

AU - Wang, Binghao

AU - Tan, Jeffrey M.

AU - Lohr, Tracy L.

AU - Lauhon, Lincoln J.

AU - Marks, Tobin J

PY - 2017/4/24

Y1 - 2017/4/24

N2 - Wet chemical screening reveals the very high reactivity of Mo(NMe2)4 with H2S for the low-temperature synthesis of MoS2. This observation motivated an investigation of Mo(NMe2)4 as a volatile precursor for the atomic layer deposition (ALD) of MoS2 thin films. Herein we report that Mo(NMe2)4 enables MoS2 film growth at record low temperatures—as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures.

AB - Wet chemical screening reveals the very high reactivity of Mo(NMe2)4 with H2S for the low-temperature synthesis of MoS2. This observation motivated an investigation of Mo(NMe2)4 as a volatile precursor for the atomic layer deposition (ALD) of MoS2 thin films. Herein we report that Mo(NMe2)4 enables MoS2 film growth at record low temperatures—as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures.

KW - atomic layer deposition

KW - low-temperature film growth

KW - metal–organic precursors

KW - molybdenum disulfide

UR - http://www.scopus.com/inward/record.url?scp=85017367979&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85017367979&partnerID=8YFLogxK

U2 - 10.1002/anie.201611838

DO - 10.1002/anie.201611838

M3 - Article

VL - 56

SP - 4991

EP - 4995

JO - Angewandte Chemie - International Edition

JF - Angewandte Chemie - International Edition

SN - 1433-7851

IS - 18

ER -