Manganese proteins isolated from spinach thylakoid membranes and their role in O2 evolution. II. A binuclear manganese-containing 34 kilodalton protein, a probable component of the water dehydrogenase enzyme

Daniel A. Abramowicz, G Charles Dismukes

Research output: Contribution to journalArticle

68 Citations (Scopus)

Abstract

Extraction conditions have been found which result in the retention of managanese to the 33-34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228-236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33-34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4-5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45-55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145-158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349-354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.

Original languageEnglish
Pages (from-to)318-328
Number of pages11
JournalBiochimica et Biophysica Acta - Bioenergetics
Volume765
Issue number3
DOIs
Publication statusPublished - Jun 26 1984

Fingerprint

Thylakoids
Spinacia oleracea
Manganese
Oxidoreductases
Membranes
Water
Enzymes
Proteins
Paramagnetic resonance
Oxidation
Photosystem II Protein Complex
Photosynthesis
Detergents
Photosynthetic membranes
Buffers
Gels
Ions
Oxygen
Dithionite
Apoproteins

Keywords

  • (Spinach chloroplast)
  • ESR
  • Mn protein
  • Oxygen evolution
  • Water splitting

ASJC Scopus subject areas

  • Biophysics
  • Medicine(all)

Cite this

@article{e66920311c12403dbb55957007f6f008,
title = "Manganese proteins isolated from spinach thylakoid membranes and their role in O2 evolution. II. A binuclear manganese-containing 34 kilodalton protein, a probable component of the water dehydrogenase enzyme",
abstract = "Extraction conditions have been found which result in the retention of managanese to the 33-34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228-236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33-34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4-5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45-55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145-158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349-354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.",
keywords = "(Spinach chloroplast), ESR, Mn protein, Oxygen evolution, Water splitting",
author = "Abramowicz, {Daniel A.} and Dismukes, {G Charles}",
year = "1984",
month = "6",
day = "26",
doi = "10.1016/0005-2728(84)90172-5",
language = "English",
volume = "765",
pages = "318--328",
journal = "Biochimica et Biophysica Acta - Bioenergetics",
issn = "0005-2728",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Manganese proteins isolated from spinach thylakoid membranes and their role in O2 evolution. II. A binuclear manganese-containing 34 kilodalton protein, a probable component of the water dehydrogenase enzyme

AU - Abramowicz, Daniel A.

AU - Dismukes, G Charles

PY - 1984/6/26

Y1 - 1984/6/26

N2 - Extraction conditions have been found which result in the retention of managanese to the 33-34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228-236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33-34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4-5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45-55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145-158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349-354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.

AB - Extraction conditions have been found which result in the retention of managanese to the 33-34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228-236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33-34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4-5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45-55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145-158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349-354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.

KW - (Spinach chloroplast)

KW - ESR

KW - Mn protein

KW - Oxygen evolution

KW - Water splitting

UR - http://www.scopus.com/inward/record.url?scp=0021771325&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021771325&partnerID=8YFLogxK

U2 - 10.1016/0005-2728(84)90172-5

DO - 10.1016/0005-2728(84)90172-5

M3 - Article

C2 - 6733089

AN - SCOPUS:0021771325

VL - 765

SP - 318

EP - 328

JO - Biochimica et Biophysica Acta - Bioenergetics

JF - Biochimica et Biophysica Acta - Bioenergetics

SN - 0005-2728

IS - 3

ER -