Mechanisms of Formaldehyde and C2 Formation from Methylene Reacting with CO2 Adsorbed on Ni(110)

Research output: Contribution to journalArticle

Abstract

Methylene (CH2) is thought to play a significant role as a reaction intermediate in the catalysis of methane dry reforming as well as in converting synthesis gas to light olefins via Fischer-Tropsch synthesis. Here, we report high quality Born-Oppenheimer molecular dynamics (BOMD) simulations of the reaction mechanisms associated with CH2 impinging on a Ni(110) surface with CO2 adsorbed at 0.33 ML coverage. The results show the formation of formaldehyde, carbon monoxide, C2 species such as H2C-CO2, and others. Furthermore, we provide real-time demonstration of both Eley-Rideal (ER) and hot atom (HA) reaction mechanisms. The ER mechanism mostly happens when CH2 directly collides with an oxygen of CO2, while CH2 attacks the carbon of CO2, dominantly following the HA mechanism. If CH2 reaches the Ni surface, it can easily break one C-H bond to form CH and H on the surface. The mechanistic details of H2CO, H/CO, C2, and H/CH formation are illuminated through the study of bond breaking/formation, charge transfer, and spin density of the reactants and catalytic surface. This illuminates the key contribution of geometry and electronic structure of catalytic surface to the reaction selectivity. Moreover, we find that 3CH2 switches to surfaces of 1CH2 character as soon as the methylene and nickel/CO2 orbitals show significant interaction, and as a result the reactivity is dominated by low barrier mechanisms. Overall, the BOMD simulations provide dynamical information that allows us to monitor details of the reaction mechanisms, confirming and extending current understanding of CH2 radical chemistry in the dry reforming of methane and Fischer-Tropsch synthesis.

Original languageEnglish
Pages (from-to)13827-13833
Number of pages7
JournalJournal of Physical Chemistry C
Volume122
Issue number25
DOIs
Publication statusPublished - Jun 28 2018

Fingerprint

formaldehyde
Formaldehyde
methylene
hot atoms
Fischer-Tropsch synthesis
Methane
Carbon Monoxide
Reforming reactions
Molecular dynamics
methane
methylidyne
molecular dynamics
Reaction intermediates
Atoms
reaction intermediates
synthesis gas
Synthesis gas
Computer simulation
Alkenes
synthesis

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Cite this

Mechanisms of Formaldehyde and C2 Formation from Methylene Reacting with CO2 Adsorbed on Ni(110). / Lin, Wei; Schatz, George C.

In: Journal of Physical Chemistry C, Vol. 122, No. 25, 28.06.2018, p. 13827-13833.

Research output: Contribution to journalArticle

@article{6b689da38b1847d0b7bb0331a20c0cee,
title = "Mechanisms of Formaldehyde and C2 Formation from Methylene Reacting with CO2 Adsorbed on Ni(110)",
abstract = "Methylene (CH2) is thought to play a significant role as a reaction intermediate in the catalysis of methane dry reforming as well as in converting synthesis gas to light olefins via Fischer-Tropsch synthesis. Here, we report high quality Born-Oppenheimer molecular dynamics (BOMD) simulations of the reaction mechanisms associated with CH2 impinging on a Ni(110) surface with CO2 adsorbed at 0.33 ML coverage. The results show the formation of formaldehyde, carbon monoxide, C2 species such as H2C-CO2, and others. Furthermore, we provide real-time demonstration of both Eley-Rideal (ER) and hot atom (HA) reaction mechanisms. The ER mechanism mostly happens when CH2 directly collides with an oxygen of CO2, while CH2 attacks the carbon of CO2, dominantly following the HA mechanism. If CH2 reaches the Ni surface, it can easily break one C-H bond to form CH and H on the surface. The mechanistic details of H2CO, H/CO, C2, and H/CH formation are illuminated through the study of bond breaking/formation, charge transfer, and spin density of the reactants and catalytic surface. This illuminates the key contribution of geometry and electronic structure of catalytic surface to the reaction selectivity. Moreover, we find that 3CH2 switches to surfaces of 1CH2 character as soon as the methylene and nickel/CO2 orbitals show significant interaction, and as a result the reactivity is dominated by low barrier mechanisms. Overall, the BOMD simulations provide dynamical information that allows us to monitor details of the reaction mechanisms, confirming and extending current understanding of CH2 radical chemistry in the dry reforming of methane and Fischer-Tropsch synthesis.",
author = "Wei Lin and Schatz, {George C}",
year = "2018",
month = "6",
day = "28",
doi = "10.1021/acs.jpcc.8b00945",
language = "English",
volume = "122",
pages = "13827--13833",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "25",

}

TY - JOUR

T1 - Mechanisms of Formaldehyde and C2 Formation from Methylene Reacting with CO2 Adsorbed on Ni(110)

AU - Lin, Wei

AU - Schatz, George C

PY - 2018/6/28

Y1 - 2018/6/28

N2 - Methylene (CH2) is thought to play a significant role as a reaction intermediate in the catalysis of methane dry reforming as well as in converting synthesis gas to light olefins via Fischer-Tropsch synthesis. Here, we report high quality Born-Oppenheimer molecular dynamics (BOMD) simulations of the reaction mechanisms associated with CH2 impinging on a Ni(110) surface with CO2 adsorbed at 0.33 ML coverage. The results show the formation of formaldehyde, carbon monoxide, C2 species such as H2C-CO2, and others. Furthermore, we provide real-time demonstration of both Eley-Rideal (ER) and hot atom (HA) reaction mechanisms. The ER mechanism mostly happens when CH2 directly collides with an oxygen of CO2, while CH2 attacks the carbon of CO2, dominantly following the HA mechanism. If CH2 reaches the Ni surface, it can easily break one C-H bond to form CH and H on the surface. The mechanistic details of H2CO, H/CO, C2, and H/CH formation are illuminated through the study of bond breaking/formation, charge transfer, and spin density of the reactants and catalytic surface. This illuminates the key contribution of geometry and electronic structure of catalytic surface to the reaction selectivity. Moreover, we find that 3CH2 switches to surfaces of 1CH2 character as soon as the methylene and nickel/CO2 orbitals show significant interaction, and as a result the reactivity is dominated by low barrier mechanisms. Overall, the BOMD simulations provide dynamical information that allows us to monitor details of the reaction mechanisms, confirming and extending current understanding of CH2 radical chemistry in the dry reforming of methane and Fischer-Tropsch synthesis.

AB - Methylene (CH2) is thought to play a significant role as a reaction intermediate in the catalysis of methane dry reforming as well as in converting synthesis gas to light olefins via Fischer-Tropsch synthesis. Here, we report high quality Born-Oppenheimer molecular dynamics (BOMD) simulations of the reaction mechanisms associated with CH2 impinging on a Ni(110) surface with CO2 adsorbed at 0.33 ML coverage. The results show the formation of formaldehyde, carbon monoxide, C2 species such as H2C-CO2, and others. Furthermore, we provide real-time demonstration of both Eley-Rideal (ER) and hot atom (HA) reaction mechanisms. The ER mechanism mostly happens when CH2 directly collides with an oxygen of CO2, while CH2 attacks the carbon of CO2, dominantly following the HA mechanism. If CH2 reaches the Ni surface, it can easily break one C-H bond to form CH and H on the surface. The mechanistic details of H2CO, H/CO, C2, and H/CH formation are illuminated through the study of bond breaking/formation, charge transfer, and spin density of the reactants and catalytic surface. This illuminates the key contribution of geometry and electronic structure of catalytic surface to the reaction selectivity. Moreover, we find that 3CH2 switches to surfaces of 1CH2 character as soon as the methylene and nickel/CO2 orbitals show significant interaction, and as a result the reactivity is dominated by low barrier mechanisms. Overall, the BOMD simulations provide dynamical information that allows us to monitor details of the reaction mechanisms, confirming and extending current understanding of CH2 radical chemistry in the dry reforming of methane and Fischer-Tropsch synthesis.

UR - http://www.scopus.com/inward/record.url?scp=85049383126&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049383126&partnerID=8YFLogxK

U2 - 10.1021/acs.jpcc.8b00945

DO - 10.1021/acs.jpcc.8b00945

M3 - Article

AN - SCOPUS:85049383126

VL - 122

SP - 13827

EP - 13833

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 25

ER -