Meta-DNA structures

Guangbao Yao, Fei Zhang, Fei Wang, Tianhuan Peng, Hao Liu, Erik Poppleton, Petr Šulc, Shuoxing Jiang, Lan Liu, Chen Gong, Xinxin Jing, Xiaoguo Liu, Lihua Wang, Yan Liu, Chunhai Fan, Hao Yan

Research output: Contribution to journalArticle

Abstract

DNA origami has emerged as a highly programmable method to construct customized objects and functional devices in the 10–100 nm scale. Scaling up the size of the DNA origami would enable many potential applications, which include metamaterial construction and surface-based biophysical assays. Here we demonstrate that a six-helix bundle DNA origami nanostructure in the submicrometre scale (meta-DNA) could be used as a magnified analogue of single-stranded DNA, and that two meta-DNAs that contain complementary ‘meta-base pairs’ can form double helices with programmed handedness and helical pitches. By mimicking the molecular behaviours of DNA strands and their assembly strategies, we used meta-DNA building blocks to form diverse and complex structures on the micrometre scale. Using meta-DNA building blocks, we constructed a series of DNA architectures on a submicrometre-to-micrometre scale, which include meta-multi-arm junctions, three-dimensional (3D) polyhedrons, and various 2D/3D lattices. We also demonstrated a hierarchical strand-displacement reaction on meta-DNA to transfer the dynamic features of DNA into the meta-DNA. This meta-DNA self-assembly concept may transform the microscopic world of structural DNA nanotechnology. [Figure not available: see fulltext.].

Original languageEnglish
JournalNature chemistry
DOIs
Publication statusAccepted/In press - 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Meta-DNA structures'. Together they form a unique fingerprint.

  • Cite this

    Yao, G., Zhang, F., Wang, F., Peng, T., Liu, H., Poppleton, E., Šulc, P., Jiang, S., Liu, L., Gong, C., Jing, X., Liu, X., Wang, L., Liu, Y., Fan, C., & Yan, H. (Accepted/In press). Meta-DNA structures. Nature chemistry. https://doi.org/10.1038/s41557-020-0539-8