Metal-Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States

Jian Liu, Louis R. Redfern, Yijun Liao, Timur Islamoglu, Ahmet Atilgan, Omar K. Farha, Joseph T. Hupp

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The formation of oxygen vacancies via reversible transitions between Ce(IV) and Ce(III) plays a crucial role in the propensity of cerium oxide to act as a supporting promoter in oxidative heterogeneous catalysis. An open challenge is, however, preparation of high-porosity, supported arrays of isolated ceria(IV, III) clusters with high porosity. Herein, we report two examples of oxy-Ce(IV, III) clusters supported and spatially isolated on an oxy-zirconium MOF, NU-1000. The clusters are introduced using either of two Ce complexes (precursors): CeIV(tmhd)4 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate) or CeIII(iPrCp)3 (iPrCp = tris(isopropyl-cyclopenta-dienyl), via SIM (solvothermal installation in MOFs). The prepared materials are named Ce-l-SIM-NU-1000 and Ce-n-SIM-NU-1000, respectively. X-ray photoelectron spectroscopy characterization shows that the ratio of Ce(III) to Ce(IV) oxidation states can be modulated. Difference envelope density analyses of X-ray scattering show that CexOyHz clusters in Ce-n-SIM-NU-1000 are located between pairs of Zr6 nodes, whereas in Ce-l-SIM-NU-1000, they are sited on MOF linkers throughout the micropores of NU-1000. Cluster size differences were further evaluated by pair function distribution (PDF) analyses of total X-ray scattering reveal that the node sited clusters contain of only a few cerium ions, whereas the linker-sited clusters each contain ∼90 cerium ions. The observed size appears to be defined by the size of NU-1000s triangular pores, that is, cluster formation appears to be pore templated. The Ce-SIM functionalized materials are catalytically active for hydrolysis of DMNP (dimethyl 4-nitrophenyl phosphate), a nerve-agent simulant. Conversion of a small fraction of the Ce(IV) ions in which the presence of small fractions of the cerium(IV) ions in Ce-l-SIM-NU-1000 to cerium(III) significantly enhances catalytic activity-perhaps by labilizing aqua ligands and facilitating simulant binding to the clusters Lewis-basic metal ions. While not explored here, the larger clusters, when partially reduced, are, we believe, candidate catalysts for O2 activation and subsequent selective oxidation of organic substrates.

Original languageEnglish
Pages (from-to)47822-47829
Number of pages8
JournalACS Applied Materials and Interfaces
Issue number51
Publication statusPublished - Dec 26 2019


  • ceria(IV, III) cluster
  • chemical warfare agent
  • hydrolysis
  • metal-organic framework
  • pore templated

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Metal-Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States'. Together they form a unique fingerprint.

Cite this