Metal-silicon bonding energetics in organo-Group 4 and organo-f-element complexes. Implications for bonding and reactivity

Wayne A. King, Tobin J Marks

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Metal-silicon bond disruption enthalpies have been measured for a series of U, Zr, and Sm metallocene complexes: Cp3USi(TMS)3, Cp2Zr(Cl)Si(TMS)3, Cp2Zr(Me)Si(TMS)3, Cp2Zr(TMS)Si(TMS)3, Cp2Zr(TMS)OtBu, Cp′2SmSiH(TMS)2 (Cp = η5-C5H5, Cp′ = η5-Me5C5, TMS = trimethylsilyl). Data were obtained by anaerobic batch-titration solution calorimetry in toluene. Derived metal-ligand bond enthalpies D(LnM-R) in kcal mol-1 are: D[Cp3USi(TMS)3] = 37(3), D[Cp2(Cl)ZrSi(TMS)3]=57(3), D[Cp2(Me)ZrSi(TMS)3]=56(5), D[Cp2(Si(TMS)3)ZrMe] = 66(5), D[Cp2(OtBu)Zr-TMS] = 60(5), D[Cp2(TMS)ZrSi(TMS)3] = 42(11), D[Cp2(Si(TMS)3)Zr-TMS] = 45(7), D[Cp′2SmSiH(TMS)2] = 43(5). These results show that metal-silicon bond disruption enthalpies involving these electron-deficient metals are substantially smaller than those of the corresponding metal hydride and hydrocarbyl bonds. These data in combination with previously measured metal-ligand bond enthalpies allow thermodynamic analyses of a variety of stoichiometric and catalytic transformations involving metal silyl functionalities. The latter include potential pathways for dehydrogenative silane polymerization, dehydrogenative silane-hydrocarbon coupling, olefin hydrosilylation, and dehydrogenative silane-amine coupling. It is not uncommon for there to be multiple pathways which effect the same catalytic transformation and which contain no steps having major enthalpic impediments.

Original languageEnglish
Pages (from-to)343-354
Number of pages12
JournalInorganica Chimica Acta
Volume229
Issue number1-2
DOIs
Publication statusPublished - 1995

Fingerprint

Silicon
Chemical elements
reactivity
Metals
Silanes
silicon
enthalpy
Enthalpy
silanes
metals
Ligands
ligands
metal hydrides
Hydrosilylation
titration
Toluene
Alkenes
Calorimetry
alkenes
Hydrocarbons

Keywords

  • Block f-element complexes
  • Bond enthalpies
  • Group 4 transition element complexes
  • Organyl complexes

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Cite this

Metal-silicon bonding energetics in organo-Group 4 and organo-f-element complexes. Implications for bonding and reactivity. / King, Wayne A.; Marks, Tobin J.

In: Inorganica Chimica Acta, Vol. 229, No. 1-2, 1995, p. 343-354.

Research output: Contribution to journalArticle

@article{416806a4bffd48d0aee1653e6969e370,
title = "Metal-silicon bonding energetics in organo-Group 4 and organo-f-element complexes. Implications for bonding and reactivity",
abstract = "Metal-silicon bond disruption enthalpies have been measured for a series of U, Zr, and Sm metallocene complexes: Cp3USi(TMS)3, Cp2Zr(Cl)Si(TMS)3, Cp2Zr(Me)Si(TMS)3, Cp2Zr(TMS)Si(TMS)3, Cp2Zr(TMS)OtBu, Cp′2SmSiH(TMS)2 (Cp = η5-C5H5, Cp′ = η5-Me5C5, TMS = trimethylsilyl). Data were obtained by anaerobic batch-titration solution calorimetry in toluene. Derived metal-ligand bond enthalpies D(LnM-R) in kcal mol-1 are: D[Cp3USi(TMS)3] = 37(3), D[Cp2(Cl)ZrSi(TMS)3]=57(3), D[Cp2(Me)ZrSi(TMS)3]=56(5), D[Cp2(Si(TMS)3)ZrMe] = 66(5), D[Cp2(OtBu)Zr-TMS] = 60(5), D[Cp2(TMS)ZrSi(TMS)3] = 42(11), D[Cp2(Si(TMS)3)Zr-TMS] = 45(7), D[Cp′2SmSiH(TMS)2] = 43(5). These results show that metal-silicon bond disruption enthalpies involving these electron-deficient metals are substantially smaller than those of the corresponding metal hydride and hydrocarbyl bonds. These data in combination with previously measured metal-ligand bond enthalpies allow thermodynamic analyses of a variety of stoichiometric and catalytic transformations involving metal silyl functionalities. The latter include potential pathways for dehydrogenative silane polymerization, dehydrogenative silane-hydrocarbon coupling, olefin hydrosilylation, and dehydrogenative silane-amine coupling. It is not uncommon for there to be multiple pathways which effect the same catalytic transformation and which contain no steps having major enthalpic impediments.",
keywords = "Block f-element complexes, Bond enthalpies, Group 4 transition element complexes, Organyl complexes",
author = "King, {Wayne A.} and Marks, {Tobin J}",
year = "1995",
doi = "10.1016/0020-1693(94)04265-W",
language = "English",
volume = "229",
pages = "343--354",
journal = "Inorganica Chimica Acta",
issn = "0020-1693",
publisher = "Elsevier BV",
number = "1-2",

}

TY - JOUR

T1 - Metal-silicon bonding energetics in organo-Group 4 and organo-f-element complexes. Implications for bonding and reactivity

AU - King, Wayne A.

AU - Marks, Tobin J

PY - 1995

Y1 - 1995

N2 - Metal-silicon bond disruption enthalpies have been measured for a series of U, Zr, and Sm metallocene complexes: Cp3USi(TMS)3, Cp2Zr(Cl)Si(TMS)3, Cp2Zr(Me)Si(TMS)3, Cp2Zr(TMS)Si(TMS)3, Cp2Zr(TMS)OtBu, Cp′2SmSiH(TMS)2 (Cp = η5-C5H5, Cp′ = η5-Me5C5, TMS = trimethylsilyl). Data were obtained by anaerobic batch-titration solution calorimetry in toluene. Derived metal-ligand bond enthalpies D(LnM-R) in kcal mol-1 are: D[Cp3USi(TMS)3] = 37(3), D[Cp2(Cl)ZrSi(TMS)3]=57(3), D[Cp2(Me)ZrSi(TMS)3]=56(5), D[Cp2(Si(TMS)3)ZrMe] = 66(5), D[Cp2(OtBu)Zr-TMS] = 60(5), D[Cp2(TMS)ZrSi(TMS)3] = 42(11), D[Cp2(Si(TMS)3)Zr-TMS] = 45(7), D[Cp′2SmSiH(TMS)2] = 43(5). These results show that metal-silicon bond disruption enthalpies involving these electron-deficient metals are substantially smaller than those of the corresponding metal hydride and hydrocarbyl bonds. These data in combination with previously measured metal-ligand bond enthalpies allow thermodynamic analyses of a variety of stoichiometric and catalytic transformations involving metal silyl functionalities. The latter include potential pathways for dehydrogenative silane polymerization, dehydrogenative silane-hydrocarbon coupling, olefin hydrosilylation, and dehydrogenative silane-amine coupling. It is not uncommon for there to be multiple pathways which effect the same catalytic transformation and which contain no steps having major enthalpic impediments.

AB - Metal-silicon bond disruption enthalpies have been measured for a series of U, Zr, and Sm metallocene complexes: Cp3USi(TMS)3, Cp2Zr(Cl)Si(TMS)3, Cp2Zr(Me)Si(TMS)3, Cp2Zr(TMS)Si(TMS)3, Cp2Zr(TMS)OtBu, Cp′2SmSiH(TMS)2 (Cp = η5-C5H5, Cp′ = η5-Me5C5, TMS = trimethylsilyl). Data were obtained by anaerobic batch-titration solution calorimetry in toluene. Derived metal-ligand bond enthalpies D(LnM-R) in kcal mol-1 are: D[Cp3USi(TMS)3] = 37(3), D[Cp2(Cl)ZrSi(TMS)3]=57(3), D[Cp2(Me)ZrSi(TMS)3]=56(5), D[Cp2(Si(TMS)3)ZrMe] = 66(5), D[Cp2(OtBu)Zr-TMS] = 60(5), D[Cp2(TMS)ZrSi(TMS)3] = 42(11), D[Cp2(Si(TMS)3)Zr-TMS] = 45(7), D[Cp′2SmSiH(TMS)2] = 43(5). These results show that metal-silicon bond disruption enthalpies involving these electron-deficient metals are substantially smaller than those of the corresponding metal hydride and hydrocarbyl bonds. These data in combination with previously measured metal-ligand bond enthalpies allow thermodynamic analyses of a variety of stoichiometric and catalytic transformations involving metal silyl functionalities. The latter include potential pathways for dehydrogenative silane polymerization, dehydrogenative silane-hydrocarbon coupling, olefin hydrosilylation, and dehydrogenative silane-amine coupling. It is not uncommon for there to be multiple pathways which effect the same catalytic transformation and which contain no steps having major enthalpic impediments.

KW - Block f-element complexes

KW - Bond enthalpies

KW - Group 4 transition element complexes

KW - Organyl complexes

UR - http://www.scopus.com/inward/record.url?scp=0001179727&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001179727&partnerID=8YFLogxK

U2 - 10.1016/0020-1693(94)04265-W

DO - 10.1016/0020-1693(94)04265-W

M3 - Article

VL - 229

SP - 343

EP - 354

JO - Inorganica Chimica Acta

JF - Inorganica Chimica Acta

SN - 0020-1693

IS - 1-2

ER -