Micro-Scale Device—An Alternative Route for Studying the Intrinsic Properties of Solid-State Materials: The Case of Semiconducting TaGeIr

I. Antonyshyn, F. R. Wagner, M. Bobnar, O. Sichevych, U. Burkhardt, M. Schmidt, M. König, K. Poeppelmeier, A. P. Mackenzie, E. Svanidze, Yu Grin

Research output: Contribution to journalArticlepeer-review

Abstract

An efficient application of a material is only possible if we know its physical and chemical properties, which is frequently obstructed by the presence of micro- or macroscopic inclusions of secondary phases. While sometimes a sophisticated synthesis route can address this issue, often obtaining pure material is not possible. One example is TaGeIr, which has highly sample-dependent properties resulting from the presence of several impurity phases, which influence electronic transport in the material. The effect of these minority phases was avoided by manufacturing, with the help of focused-ion-beam, a μm-scale device containing only one phase—TaGeIr. This work provides evidence for intrinsic semiconducting behavior of TaGeIr and serves as an example of selective single-domain device manufacturing. This approach gives a unique access to the properties of compounds that cannot be synthesized in single-phase form, sparing costly and time-consuming synthesis efforts.

Original languageEnglish
Pages (from-to)11136-11141
Number of pages6
JournalAngewandte Chemie - International Edition
Volume59
Issue number27
DOIs
Publication statusPublished - Jun 26 2020

Keywords

  • crystal structures
  • electronic structure
  • semiconductors
  • solid-state structures

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Fingerprint Dive into the research topics of 'Micro-Scale Device—An Alternative Route for Studying the Intrinsic Properties of Solid-State Materials: The Case of Semiconducting TaGeIr'. Together they form a unique fingerprint.

Cite this