Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure

Yongqiang Xue, Mark A Ratner

Research output: Contribution to journalArticle

167 Citations (Scopus)

Abstract

We investigate the effect on molecular transport due to the different structural aspects of metal-molecule interfaces. The example system chosen is the prototypical molecular device formed by sandwiching the phenyl dithiolate molecule (PDT) between two gold electrodes with different metal-molecule distances, atomic structure at the metallic surface, molecular adsorption geometry, and with an additional hydrogen end atom. We find the dependence of the conductance on the metal-molecule interface structure is determined by the competition between the modified metal-molecule coupling and the corresponding modified energy level lineup at the molecular junction. Due to the close proximity of the highest occupied molecular orbital (HOMO) of the isolated PDT molecule to the gold Fermi level, this leads to the counterintuitive increase of conductance with increasing top-metal-molecule distance that decreases only after the energy level line up saturates to that of the molecule chemisorbed on the substrate. We find that the effect on molecular transport from adding an apex atom onto the surface of a semi-infinite electrode is similar to that from increasing the metal-molecule distance. The similarity is reflected in both the charge and potential response of the molecular junction and consequently also in the nonlinear transport characteristics. Changing the molecular adsorption geometry from a threefold to a top configuration leads to slightly favorable energy level lineup for the molecular junction at equilibrium and consequently larger conductance, but the overall transport characteristics remain qualitatively the same. The presence of an additional hydrogen end atom at the top-metal-molecule contact substantially affects the electronic processes in the molecular junction due to the different nature of the molecular orbitals involved and the asymmetric device structure, which leads to reduced conductance and current. The results of the detailed microscopic calculation can all be understood qualitatively from the equilibrium energy level lineup and the knowledge of the voltage drop across the molecular junction at finite bias voltages.

Original languageEnglish
Article number115407
Pages (from-to)1154071-11540711
Number of pages10386641
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume68
Issue number11
Publication statusPublished - Sep 2003

Fingerprint

Molecules
Metals
molecules
Electron energy levels
metals
energy levels
Molecular orbitals
Gold
Atoms
Hydrogen
molecular orbitals
gold
atoms
Adsorption
Electrodes
adsorption
electrodes
Geometry
electric potential
hydrogen

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

@article{3532832a842b40c7b35fc00724ce541f,
title = "Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure",
abstract = "We investigate the effect on molecular transport due to the different structural aspects of metal-molecule interfaces. The example system chosen is the prototypical molecular device formed by sandwiching the phenyl dithiolate molecule (PDT) between two gold electrodes with different metal-molecule distances, atomic structure at the metallic surface, molecular adsorption geometry, and with an additional hydrogen end atom. We find the dependence of the conductance on the metal-molecule interface structure is determined by the competition between the modified metal-molecule coupling and the corresponding modified energy level lineup at the molecular junction. Due to the close proximity of the highest occupied molecular orbital (HOMO) of the isolated PDT molecule to the gold Fermi level, this leads to the counterintuitive increase of conductance with increasing top-metal-molecule distance that decreases only after the energy level line up saturates to that of the molecule chemisorbed on the substrate. We find that the effect on molecular transport from adding an apex atom onto the surface of a semi-infinite electrode is similar to that from increasing the metal-molecule distance. The similarity is reflected in both the charge and potential response of the molecular junction and consequently also in the nonlinear transport characteristics. Changing the molecular adsorption geometry from a threefold to a top configuration leads to slightly favorable energy level lineup for the molecular junction at equilibrium and consequently larger conductance, but the overall transport characteristics remain qualitatively the same. The presence of an additional hydrogen end atom at the top-metal-molecule contact substantially affects the electronic processes in the molecular junction due to the different nature of the molecular orbitals involved and the asymmetric device structure, which leads to reduced conductance and current. The results of the detailed microscopic calculation can all be understood qualitatively from the equilibrium energy level lineup and the knowledge of the voltage drop across the molecular junction at finite bias voltages.",
author = "Yongqiang Xue and Ratner, {Mark A}",
year = "2003",
month = "9",
language = "English",
volume = "68",
pages = "1154071--11540711",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "11",

}

TY - JOUR

T1 - Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure

AU - Xue, Yongqiang

AU - Ratner, Mark A

PY - 2003/9

Y1 - 2003/9

N2 - We investigate the effect on molecular transport due to the different structural aspects of metal-molecule interfaces. The example system chosen is the prototypical molecular device formed by sandwiching the phenyl dithiolate molecule (PDT) between two gold electrodes with different metal-molecule distances, atomic structure at the metallic surface, molecular adsorption geometry, and with an additional hydrogen end atom. We find the dependence of the conductance on the metal-molecule interface structure is determined by the competition between the modified metal-molecule coupling and the corresponding modified energy level lineup at the molecular junction. Due to the close proximity of the highest occupied molecular orbital (HOMO) of the isolated PDT molecule to the gold Fermi level, this leads to the counterintuitive increase of conductance with increasing top-metal-molecule distance that decreases only after the energy level line up saturates to that of the molecule chemisorbed on the substrate. We find that the effect on molecular transport from adding an apex atom onto the surface of a semi-infinite electrode is similar to that from increasing the metal-molecule distance. The similarity is reflected in both the charge and potential response of the molecular junction and consequently also in the nonlinear transport characteristics. Changing the molecular adsorption geometry from a threefold to a top configuration leads to slightly favorable energy level lineup for the molecular junction at equilibrium and consequently larger conductance, but the overall transport characteristics remain qualitatively the same. The presence of an additional hydrogen end atom at the top-metal-molecule contact substantially affects the electronic processes in the molecular junction due to the different nature of the molecular orbitals involved and the asymmetric device structure, which leads to reduced conductance and current. The results of the detailed microscopic calculation can all be understood qualitatively from the equilibrium energy level lineup and the knowledge of the voltage drop across the molecular junction at finite bias voltages.

AB - We investigate the effect on molecular transport due to the different structural aspects of metal-molecule interfaces. The example system chosen is the prototypical molecular device formed by sandwiching the phenyl dithiolate molecule (PDT) between two gold electrodes with different metal-molecule distances, atomic structure at the metallic surface, molecular adsorption geometry, and with an additional hydrogen end atom. We find the dependence of the conductance on the metal-molecule interface structure is determined by the competition between the modified metal-molecule coupling and the corresponding modified energy level lineup at the molecular junction. Due to the close proximity of the highest occupied molecular orbital (HOMO) of the isolated PDT molecule to the gold Fermi level, this leads to the counterintuitive increase of conductance with increasing top-metal-molecule distance that decreases only after the energy level line up saturates to that of the molecule chemisorbed on the substrate. We find that the effect on molecular transport from adding an apex atom onto the surface of a semi-infinite electrode is similar to that from increasing the metal-molecule distance. The similarity is reflected in both the charge and potential response of the molecular junction and consequently also in the nonlinear transport characteristics. Changing the molecular adsorption geometry from a threefold to a top configuration leads to slightly favorable energy level lineup for the molecular junction at equilibrium and consequently larger conductance, but the overall transport characteristics remain qualitatively the same. The presence of an additional hydrogen end atom at the top-metal-molecule contact substantially affects the electronic processes in the molecular junction due to the different nature of the molecular orbitals involved and the asymmetric device structure, which leads to reduced conductance and current. The results of the detailed microscopic calculation can all be understood qualitatively from the equilibrium energy level lineup and the knowledge of the voltage drop across the molecular junction at finite bias voltages.

UR - http://www.scopus.com/inward/record.url?scp=0242511131&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0242511131&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0242511131

VL - 68

SP - 1154071

EP - 11540711

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 11

M1 - 115407

ER -