Molecular symmetry. IV. The coupled perturbed Hartree–Fock method

Toshikazu Takada, Michel Dupuis, Harry F. King

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Symmetry methods employed in the ab initio polyatomic program HONDO are extended to the coupled perturbed Hartree–Fock (CPHF) formalism, a key step in the analytical computation of energy first derivatives for configuration interaction (CI) wavefunctions, and energy second derivatives for Hartree–Fock (HF) wavefunctions. One possible computational strategy is to construct Fock‐like matrices for each nuclear coordinate in which the one‐ and two‐electron integrals of the usual Fock matrix are replaced by the integral first derivatives. “Skeleton” matrices are constructed from the unique blocks of electron‐repulsion integral derivatives. The correct matrices are generated by applying a symmetrization operator. The analysis is valid for many wavefunctions, including closed‐ or open‐shell spin‐restricted and spin‐unrestricted HF wavefunctions. To illustrate the method, we compare the computer time required for setting up the coupled perturbed HF equations for eclipsed ethane using D3h symmetry point group and various subgroups of D3h. Computational times are roughly inversely proportional to the order of the point group.

Original languageEnglish
Pages (from-to)234-240
Number of pages7
JournalJournal of Computational Chemistry
Volume4
Issue number2
DOIs
Publication statusPublished - Jan 1 1983

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Computational Mathematics

Cite this