Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries

Vicky V T Doan-Nguyen, Kota S. Subrahmanyam, Megan M. Butala, Jeffrey A. Gerbec, Saiful M. Islam, Katherine N. Kanipe, Catrina E. Wilson, Mahalingam Balasubramanian, Kamila M. Wiaderek, Olaf J. Borkiewicz, Karena W. Chapman, Peter J. Chupas, Martin Moskovits, Bruce S. Dunn, Mercouri G Kanatzidis, Ram Seshadri

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g-1 (close to 1000 mAh g-1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a "glue" in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. We find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.

Original languageEnglish
Pages (from-to)8357-8365
Number of pages9
JournalChemistry of Materials
Volume28
Issue number22
DOIs
Publication statusPublished - Nov 22 2016

Fingerprint

Polysulfides
Molybdenum
Anions
Negative ions
Electrodes
Sulfur
Transition metals
Glues
Carbonates
X ray spectroscopy
Ether
Electrolytes
Distribution functions
Ethers
Cathodes
X ray photoelectron spectroscopy
Solubility
Oxidation-Reduction
Lithium-ion batteries
polysulfide

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Chemistry

Cite this

Doan-Nguyen, V. V. T., Subrahmanyam, K. S., Butala, M. M., Gerbec, J. A., Islam, S. M., Kanipe, K. N., ... Seshadri, R. (2016). Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. Chemistry of Materials, 28(22), 8357-8365. https://doi.org/10.1021/acs.chemmater.6b03656

Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. / Doan-Nguyen, Vicky V T; Subrahmanyam, Kota S.; Butala, Megan M.; Gerbec, Jeffrey A.; Islam, Saiful M.; Kanipe, Katherine N.; Wilson, Catrina E.; Balasubramanian, Mahalingam; Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Chapman, Karena W.; Chupas, Peter J.; Moskovits, Martin; Dunn, Bruce S.; Kanatzidis, Mercouri G; Seshadri, Ram.

In: Chemistry of Materials, Vol. 28, No. 22, 22.11.2016, p. 8357-8365.

Research output: Contribution to journalArticle

Doan-Nguyen, VVT, Subrahmanyam, KS, Butala, MM, Gerbec, JA, Islam, SM, Kanipe, KN, Wilson, CE, Balasubramanian, M, Wiaderek, KM, Borkiewicz, OJ, Chapman, KW, Chupas, PJ, Moskovits, M, Dunn, BS, Kanatzidis, MG & Seshadri, R 2016, 'Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries', Chemistry of Materials, vol. 28, no. 22, pp. 8357-8365. https://doi.org/10.1021/acs.chemmater.6b03656
Doan-Nguyen, Vicky V T ; Subrahmanyam, Kota S. ; Butala, Megan M. ; Gerbec, Jeffrey A. ; Islam, Saiful M. ; Kanipe, Katherine N. ; Wilson, Catrina E. ; Balasubramanian, Mahalingam ; Wiaderek, Kamila M. ; Borkiewicz, Olaf J. ; Chapman, Karena W. ; Chupas, Peter J. ; Moskovits, Martin ; Dunn, Bruce S. ; Kanatzidis, Mercouri G ; Seshadri, Ram. / Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. In: Chemistry of Materials. 2016 ; Vol. 28, No. 22. pp. 8357-8365.
@article{d0cff6457d9946aa90334d2b6bfb9d74,
title = "Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries",
abstract = "Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g-1 (close to 1000 mAh g-1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a {"}glue{"} in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. We find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.",
author = "Doan-Nguyen, {Vicky V T} and Subrahmanyam, {Kota S.} and Butala, {Megan M.} and Gerbec, {Jeffrey A.} and Islam, {Saiful M.} and Kanipe, {Katherine N.} and Wilson, {Catrina E.} and Mahalingam Balasubramanian and Wiaderek, {Kamila M.} and Borkiewicz, {Olaf J.} and Chapman, {Karena W.} and Chupas, {Peter J.} and Martin Moskovits and Dunn, {Bruce S.} and Kanatzidis, {Mercouri G} and Ram Seshadri",
year = "2016",
month = "11",
day = "22",
doi = "10.1021/acs.chemmater.6b03656",
language = "English",
volume = "28",
pages = "8357--8365",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "22",

}

TY - JOUR

T1 - Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries

AU - Doan-Nguyen, Vicky V T

AU - Subrahmanyam, Kota S.

AU - Butala, Megan M.

AU - Gerbec, Jeffrey A.

AU - Islam, Saiful M.

AU - Kanipe, Katherine N.

AU - Wilson, Catrina E.

AU - Balasubramanian, Mahalingam

AU - Wiaderek, Kamila M.

AU - Borkiewicz, Olaf J.

AU - Chapman, Karena W.

AU - Chupas, Peter J.

AU - Moskovits, Martin

AU - Dunn, Bruce S.

AU - Kanatzidis, Mercouri G

AU - Seshadri, Ram

PY - 2016/11/22

Y1 - 2016/11/22

N2 - Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g-1 (close to 1000 mAh g-1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a "glue" in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. We find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.

AB - Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g-1 (close to 1000 mAh g-1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a "glue" in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. We find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.

UR - http://www.scopus.com/inward/record.url?scp=84997610674&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84997610674&partnerID=8YFLogxK

U2 - 10.1021/acs.chemmater.6b03656

DO - 10.1021/acs.chemmater.6b03656

M3 - Article

AN - SCOPUS:84997610674

VL - 28

SP - 8357

EP - 8365

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 22

ER -