Monolayer-based selective optical recognition and quantification of FeCl3 via electron transfer

Tarkeshwar Gupta, Milko E. Van Der Boom

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)


Reagentless optical recognition and parts-per-million (ppm) quantification of FeCl3 in CH3CN was demonstrated using a redox-active Os(II)-chromophore-based monolayer on glass. The Fe3+-induced oxidation of the monolayer is fully reversible and can be monitored optically with a conventional UV/vis spectrophotometer (260-800 nm). The system can be reset with water within <1 min. Selectivity of the sensor toward FeCl 3 is not affected by the presence of representative alkali metals, alkaline earth metals, and other transition-metal salts. Sensing of Fe 3+ and concurrent generation of Fe2+ can be also observed with the naked eye by adding 2,2′-bipyridyl (bipy) to the solution to generate [Fe(bipy)3]2+. Validation of the analytical performance characteristics of the sensor was performed including reversibility, reproducibility, stability, and the detection range (0.5-162 ppm of FeCl 3 in CH3CN, 100-1000 ppm in water). The monolayer is sensitive and specifically responsive to its target ion. In addition, a blind test was conducted to probe the reproducibility and reproducibility variances of the system. The reaction of the monolayer with a CH3CN solution containing 5 ppm of FeCl3 follows pseudo first-order kinetics in the monolayer with ΔG‡298K = 21.6 ± 0.1 kcal/mol, ΔH = 10.2 ± 1.5 kcal/mol, ΔS‡ = -38.3 ± 4.9 eu.

Original languageEnglish
Pages (from-to)12296-12303
Number of pages8
JournalJournal of the American Chemical Society
Issue number40
Publication statusPublished - Oct 10 2007

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Monolayer-based selective optical recognition and quantification of FeCl<sub>3</sub> via electron transfer'. Together they form a unique fingerprint.

Cite this