Morphological Expression of the Coherence and Relative Phase of Optical Inputs to the Photoelectrodeposition of Nanopatterned Se-Te Films

Azhar I. Carim, Nicolas A. Batara, Anjali Premkumar, Richard May, Harry A. Atwater, Nathan S. Lewis

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Highly anisotropic and ordered nanoscale lamellar morphologies can be spontaneously generated over macroscopic areas, without the use of a photomask or any templating agents, via the photoelectrodeposition of Se-Te alloy films. To form such structures, the light source can be a single, linearly polarized light source that need not necessarily be highly coherent. In this work, the variation in the morphologies produced by this deposition process was evaluated in response to differences in the coherence and relative phase between multiple simultaneous linearly polarized illumination inputs. Specifically, the morphologies of photoelectrodeposits were evaluated when two tandem same-wavelength sources with discrete linear polarizations, both either mutually incoherent or mutually coherent (with defined phase differences), were used. Additionally, morphologies were simulated via computer modeling of the interfacial light scattering and absorption during the photoelectrochemical growth process. The morphologies that were generated using two coherent, in-phase sources were equivalent to those generated using only a single source. In contrast, the use of two coherent, out-of-phase sources produced a range of morphological patterns. For small out-of-phase addition of orthogonal polarization components, lamellar-type patterns were observed. When fully out-of-phase orthogonal sources (circular polarization) were used, an isotropic, mesh-type pattern was instead generated, similar to that observed when unpolarized illumination was utilized. In intermediate cases, anisotropic lamellar-type patterns were superimposed on the isotropic mesh-type patterns, and the relative height between the two structures scaled with the amount of out-of-phase addition of the orthogonal polarization components. Similar results were obtained when two incoherent sources were utilized. In every case, the long axis of the lamellar-type morphology component aligned parallel to the intensity-weighted average polarization orientation. The observations consistently agreed with computer simulations, indicating that the observed morphologies were fully determined by the nature of the illumination utilized during the growth process. The collective data thus indicated that the photoelectrodeposition process exhibits sensitivity toward the coherency, relative phase, and polarization orientations of all optical inputs and that this sensitivity is physically expressed in the morphology of the deposit.

Original languageEnglish
Pages (from-to)2963-2968
Number of pages6
JournalNano letters
Issue number5
Publication statusPublished - May 11 2016


  • Electrodeposition
  • chalcogenide
  • maskless
  • photodeposition
  • photoelectrochemistry
  • template-free

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Morphological Expression of the Coherence and Relative Phase of Optical Inputs to the Photoelectrodeposition of Nanopatterned Se-Te Films'. Together they form a unique fingerprint.

Cite this