Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport

Ravi Pokhrel, Rachel J. Service, Richard J. Debus, Gary W Brudvig

Research output: Contribution to journalArticle

52 Citations (Scopus)

Abstract

The role of chloride in photosystem II (PSII) is unclear. Using structural information from PSII and a careful comparison with other chloride-activated enzymes, we proposed a role for chloride at the D2-K317 site in PSII [Pokhrel, R., et al. (2011) Biochemistry 50, 2725-2734]. To probe the role of chloride at this site, the D2-K317R, D2-K317A, D2-K317Q, and D2-K317E mutations were created in the cyanobacterium Synechocystis sp. PCC 6803. Purified PSII from the mutants was probed with Fourier transform infrared difference spectroscopy, demonstrating that compared to PSII from wild-type Synechocystis, PSII from all four mutants exhibit changes in the conformations of the polypeptide backbone and carboxylate groups. However, D2-K317R PSII exhibits minor changes, whereas D2-K317A, D2-K317Q, and D2-K317E PSII exhibit more substantial changes in polypeptide conformations. Steady-state oxygen-evolution measurements of purified PSII core complexes show that the oxygen-evolution activity of D2-K317A is independent of chloride. This is consistent with the loss of the chloride requirement when the charged K residue is replaced with an uncharged residue that no longer binds to an essential carboxylate (D1-D61) in the absence of chloride, analogous to observations in other chloride-activated enzymes. In contrast, the oxygen-evolution activity of D2-K317R is sensitive to the chloride concentration in the assay buffer; the effective KD for chloride binding is higher in D2-K317R than in wild-type PSII, possibly because of a less optimal binding site in the mutant. The S2 states of wild-type, D2-K317A, and D2-K317R PSII were probed using electron paramagnetic resonance spectroscopy. A g = 2 multiline signal, similar to the wild-type signal, was observed for D2-K317A and D2-K317R. However, a g = 4 signal was also observed for D2-K317R. Measurements of flash-dependent O2 yields showed that D2-K317A and D2-K317R have a higher miss factor than wild-type PSII. The oxygen-release kinetics of D2-K317A and D2-K317R were slower than those of the wild type, in the following order: D2-K317A <D2-K317R <wild type. These results collectively suggest that proton transfer is inefficient in D2-K317A and D2-K317R, thereby giving rise to a higher miss factor and slower oxygen-release kinetics.

Original languageEnglish
Pages (from-to)4758-4773
Number of pages16
JournalBiochemistry
Volume52
Issue number28
DOIs
Publication statusPublished - Jul 16 2013

Fingerprint

Photosystem II Protein Complex
Lysine
Protons
Chlorides
Mutation
Oxygen
Synechocystis
Conformations
Spectroscopy
Peptides
Biochemistry
Kinetics
Proton transfer
Electron Spin Resonance Spectroscopy
Cyanobacteria
Fourier Transform Infrared Spectroscopy
Enzymes
Paramagnetic resonance
Assays
Spectrum Analysis

ASJC Scopus subject areas

  • Biochemistry

Cite this

Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport. / Pokhrel, Ravi; Service, Rachel J.; Debus, Richard J.; Brudvig, Gary W.

In: Biochemistry, Vol. 52, No. 28, 16.07.2013, p. 4758-4773.

Research output: Contribution to journalArticle

Pokhrel, Ravi ; Service, Rachel J. ; Debus, Richard J. ; Brudvig, Gary W. / Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport. In: Biochemistry. 2013 ; Vol. 52, No. 28. pp. 4758-4773.
@article{9bb5fe71b01d42dcb6f602e1455f43d0,
title = "Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport",
abstract = "The role of chloride in photosystem II (PSII) is unclear. Using structural information from PSII and a careful comparison with other chloride-activated enzymes, we proposed a role for chloride at the D2-K317 site in PSII [Pokhrel, R., et al. (2011) Biochemistry 50, 2725-2734]. To probe the role of chloride at this site, the D2-K317R, D2-K317A, D2-K317Q, and D2-K317E mutations were created in the cyanobacterium Synechocystis sp. PCC 6803. Purified PSII from the mutants was probed with Fourier transform infrared difference spectroscopy, demonstrating that compared to PSII from wild-type Synechocystis, PSII from all four mutants exhibit changes in the conformations of the polypeptide backbone and carboxylate groups. However, D2-K317R PSII exhibits minor changes, whereas D2-K317A, D2-K317Q, and D2-K317E PSII exhibit more substantial changes in polypeptide conformations. Steady-state oxygen-evolution measurements of purified PSII core complexes show that the oxygen-evolution activity of D2-K317A is independent of chloride. This is consistent with the loss of the chloride requirement when the charged K residue is replaced with an uncharged residue that no longer binds to an essential carboxylate (D1-D61) in the absence of chloride, analogous to observations in other chloride-activated enzymes. In contrast, the oxygen-evolution activity of D2-K317R is sensitive to the chloride concentration in the assay buffer; the effective KD for chloride binding is higher in D2-K317R than in wild-type PSII, possibly because of a less optimal binding site in the mutant. The S2 states of wild-type, D2-K317A, and D2-K317R PSII were probed using electron paramagnetic resonance spectroscopy. A g = 2 multiline signal, similar to the wild-type signal, was observed for D2-K317A and D2-K317R. However, a g = 4 signal was also observed for D2-K317R. Measurements of flash-dependent O2 yields showed that D2-K317A and D2-K317R have a higher miss factor than wild-type PSII. The oxygen-release kinetics of D2-K317A and D2-K317R were slower than those of the wild type, in the following order: D2-K317A <D2-K317R",
author = "Ravi Pokhrel and Service, {Rachel J.} and Debus, {Richard J.} and Brudvig, {Gary W}",
year = "2013",
month = "7",
day = "16",
doi = "10.1021/bi301700u",
language = "English",
volume = "52",
pages = "4758--4773",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "28",

}

TY - JOUR

T1 - Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport

AU - Pokhrel, Ravi

AU - Service, Rachel J.

AU - Debus, Richard J.

AU - Brudvig, Gary W

PY - 2013/7/16

Y1 - 2013/7/16

N2 - The role of chloride in photosystem II (PSII) is unclear. Using structural information from PSII and a careful comparison with other chloride-activated enzymes, we proposed a role for chloride at the D2-K317 site in PSII [Pokhrel, R., et al. (2011) Biochemistry 50, 2725-2734]. To probe the role of chloride at this site, the D2-K317R, D2-K317A, D2-K317Q, and D2-K317E mutations were created in the cyanobacterium Synechocystis sp. PCC 6803. Purified PSII from the mutants was probed with Fourier transform infrared difference spectroscopy, demonstrating that compared to PSII from wild-type Synechocystis, PSII from all four mutants exhibit changes in the conformations of the polypeptide backbone and carboxylate groups. However, D2-K317R PSII exhibits minor changes, whereas D2-K317A, D2-K317Q, and D2-K317E PSII exhibit more substantial changes in polypeptide conformations. Steady-state oxygen-evolution measurements of purified PSII core complexes show that the oxygen-evolution activity of D2-K317A is independent of chloride. This is consistent with the loss of the chloride requirement when the charged K residue is replaced with an uncharged residue that no longer binds to an essential carboxylate (D1-D61) in the absence of chloride, analogous to observations in other chloride-activated enzymes. In contrast, the oxygen-evolution activity of D2-K317R is sensitive to the chloride concentration in the assay buffer; the effective KD for chloride binding is higher in D2-K317R than in wild-type PSII, possibly because of a less optimal binding site in the mutant. The S2 states of wild-type, D2-K317A, and D2-K317R PSII were probed using electron paramagnetic resonance spectroscopy. A g = 2 multiline signal, similar to the wild-type signal, was observed for D2-K317A and D2-K317R. However, a g = 4 signal was also observed for D2-K317R. Measurements of flash-dependent O2 yields showed that D2-K317A and D2-K317R have a higher miss factor than wild-type PSII. The oxygen-release kinetics of D2-K317A and D2-K317R were slower than those of the wild type, in the following order: D2-K317A <D2-K317R

AB - The role of chloride in photosystem II (PSII) is unclear. Using structural information from PSII and a careful comparison with other chloride-activated enzymes, we proposed a role for chloride at the D2-K317 site in PSII [Pokhrel, R., et al. (2011) Biochemistry 50, 2725-2734]. To probe the role of chloride at this site, the D2-K317R, D2-K317A, D2-K317Q, and D2-K317E mutations were created in the cyanobacterium Synechocystis sp. PCC 6803. Purified PSII from the mutants was probed with Fourier transform infrared difference spectroscopy, demonstrating that compared to PSII from wild-type Synechocystis, PSII from all four mutants exhibit changes in the conformations of the polypeptide backbone and carboxylate groups. However, D2-K317R PSII exhibits minor changes, whereas D2-K317A, D2-K317Q, and D2-K317E PSII exhibit more substantial changes in polypeptide conformations. Steady-state oxygen-evolution measurements of purified PSII core complexes show that the oxygen-evolution activity of D2-K317A is independent of chloride. This is consistent with the loss of the chloride requirement when the charged K residue is replaced with an uncharged residue that no longer binds to an essential carboxylate (D1-D61) in the absence of chloride, analogous to observations in other chloride-activated enzymes. In contrast, the oxygen-evolution activity of D2-K317R is sensitive to the chloride concentration in the assay buffer; the effective KD for chloride binding is higher in D2-K317R than in wild-type PSII, possibly because of a less optimal binding site in the mutant. The S2 states of wild-type, D2-K317A, and D2-K317R PSII were probed using electron paramagnetic resonance spectroscopy. A g = 2 multiline signal, similar to the wild-type signal, was observed for D2-K317A and D2-K317R. However, a g = 4 signal was also observed for D2-K317R. Measurements of flash-dependent O2 yields showed that D2-K317A and D2-K317R have a higher miss factor than wild-type PSII. The oxygen-release kinetics of D2-K317A and D2-K317R were slower than those of the wild type, in the following order: D2-K317A <D2-K317R

UR - http://www.scopus.com/inward/record.url?scp=84880545377&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880545377&partnerID=8YFLogxK

U2 - 10.1021/bi301700u

DO - 10.1021/bi301700u

M3 - Article

C2 - 23786373

AN - SCOPUS:84880545377

VL - 52

SP - 4758

EP - 4773

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 28

ER -