New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, Properties, and Photovoltaic Performance

Chan Myae Myae Soe, Constantinos C. Stoumpos, Mikaël Kepenekian, Boubacar Traoré, Hsinhan Tsai, Wanyi Nie, Binghao Wang, Claudine Katan, Ram Seshadri, Aditya D. Mohite, Jacky Even, Tobin J. Marks, Mercouri G. Kanatzidis

Research output: Contribution to journalArticle

115 Citations (Scopus)

Abstract

We present the new homologous series (C(NH2)3)(CH3NH3)nPbnI3n+1 (n = 1, 2, 3) of layered 2D perovskites. Structural characterization by single-crystal X-ray diffraction reveals that these compounds adopt an unprecedented structure type, which is stabilized by the alternating ordering of the guanidinium and methylammonium cations in the interlayer space (ACI). Compared to the more common Ruddlesden-Popper (RP) 2D perovskites, the ACI perovskites have a different stacking motif and adopt a higher crystal symmetry. The higher symmetry of the ACI perovskites is expressed in their physical properties, which show a characteristic decrease of the bandgap with respect to their RP perovskite counterparts with the same perovskite layer thickness (n). The compounds show a monotonic decrease in the optical gap as n increases: Eg = 2.27 eV for n = 1 to Eg = 1.99 eV for n = 2 and Eg = 1.73 eV for n = 3, which show slightly narrower gaps compared to the corresponding RP perovskites. First-principles theoretical electronic structure calculations confirm the experimental optical gap trends suggesting that the ACI perovskites are direct bandgap semiconductors with wide valence and conduction bandwidths. To assess the potential of the ACI perovskites toward solar cell applications, we studied the (C(NH2)3)(CH3NH3)3Pb3I10 (n = 3) compound. Compact thin films from the (C(NH2)3)(CH3NH3)3Pb3I10 compound with excellent surface coverage can be obtained from the antisolvent dripping method. Planar photovoltaic devices from optimized ACI perovskite films yield a power-conversion-efficiency of 7.26% with a high open-circuit voltage of ∼1 V and a striking fill factor of ∼80%.

Original languageEnglish
Pages (from-to)16297-16309
Number of pages13
JournalJournal of the American Chemical Society
Volume139
Issue number45
DOIs
Publication statusPublished - Nov 15 2017

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH<sub>2</sub>)<sub>3</sub>)(CH<sub>3</sub>NH<sub>3</sub>)<sub>n</sub>Pb<sub>n</sub>I<sub>3n+1</sub>: Structure, Properties, and Photovoltaic Performance'. Together they form a unique fingerprint.

  • Cite this