TY - JOUR
T1 - Nineteen-electron adducts in the photochemistry of Cp2Fe2(CO)4 (Cp = η5-C5H5)
AU - Goldman, Alan S
AU - Tyler, David R.
PY - 1987
Y1 - 1987
N2 - Cp2Fe2(CO)4 is apparently different from the other metal-metal-bonded carbonyl dimers in that irradiation of this dimer in the presence of ligands does not lead to disproportionation: Cp2Fe2(CO)4 + L + hv » CpFe(CO)2
- + CpFe(CO)3-nLn
+. However, it was demonstrated that with most ligands the disproportionation reaction does occur but the back-reaction of the products is facile. The back-reaction can be prevented by reacting further one of the products. For example, in CH2Cl2 solution, CpFe(CO)2
- reacts with the solvent to give CpFe(CO)2CH2Cl and the back-reaction is prevented. The mechanism of the disproportionation reaction is proposed to be a chain mechanism involving 19-electron adducts formed by the reaction of a 17-electron metal radical with a ligand, e.g. CpFe(CO)2 + L → CpFe(CO)2L. It is demonstrated that the 19-electron adducts are powerful reductants. The following organometallic, organic, and inorganic substrates were reduced by the 19-electron species, thereby demonstrating the versatility of these species as reducing agents: CpMo(CO)3Cl, Fe(CN)6
3-, Mn2(CO)10, Re2(CO)10, Ru3(CO)12, Fe(CO)5, N-n-butylpyridinium, and Cp2Co+. Experiments involving the reduction of Cp2Co+ demonstrated several mechanistic points concerning the reactivity of 19-electron species.
AB - Cp2Fe2(CO)4 is apparently different from the other metal-metal-bonded carbonyl dimers in that irradiation of this dimer in the presence of ligands does not lead to disproportionation: Cp2Fe2(CO)4 + L + hv » CpFe(CO)2
- + CpFe(CO)3-nLn
+. However, it was demonstrated that with most ligands the disproportionation reaction does occur but the back-reaction of the products is facile. The back-reaction can be prevented by reacting further one of the products. For example, in CH2Cl2 solution, CpFe(CO)2
- reacts with the solvent to give CpFe(CO)2CH2Cl and the back-reaction is prevented. The mechanism of the disproportionation reaction is proposed to be a chain mechanism involving 19-electron adducts formed by the reaction of a 17-electron metal radical with a ligand, e.g. CpFe(CO)2 + L → CpFe(CO)2L. It is demonstrated that the 19-electron adducts are powerful reductants. The following organometallic, organic, and inorganic substrates were reduced by the 19-electron species, thereby demonstrating the versatility of these species as reducing agents: CpMo(CO)3Cl, Fe(CN)6
3-, Mn2(CO)10, Re2(CO)10, Ru3(CO)12, Fe(CO)5, N-n-butylpyridinium, and Cp2Co+. Experiments involving the reduction of Cp2Co+ demonstrated several mechanistic points concerning the reactivity of 19-electron species.
UR - http://www.scopus.com/inward/record.url?scp=33845282002&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845282002&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:33845282002
VL - 26
SP - 253
EP - 258
JO - Inorganic Chemistry
JF - Inorganic Chemistry
SN - 0020-1669
IS - 2
ER -