Nitrous oxide gas phase chemistry during silicon oxynitride film growth

A. Gupta, S. Toby, E. P. Gusev, H. C. Lu, Y. Li, M. L. Green, T. Gustafsson, Eric Garfunkel

Research output: Contribution to journalArticle

42 Citations (Scopus)


N2O gas phase chemistry has been examined as it relates to the problem of ultrathin film silicon oxynitridation for semiconductor devices. Computational and analytical kinetics studies are presented that demonstrate: (i) there are 5 main reactions in the decomposition of N2O, (ii) the gas composition over a 1000K - 1400K temperature range is as follows: N2 (65.3 - 59.3%); O2 (32.0 - 25.7%), NO (2.7 - 15.0%), (iii) the N2O decomposition obeys first-order kinetics, and the initial rate law for N2O decomposition is Rinit = 2k1[N2O] which rapidly changes to Rlate = k1[N2O] as the reaction proceeds, (iv) the branching ratio for the two reactions: N2O + O → 2NO and N2O → O N2 + O2 lies between 0.1 and 0.5 (0.1 <α <0.5) and varies with conditions, (v) the apparent activation energy for the decomposition of N2O is 2.5 eV/molecule (2.4×102 kJ/mole), (vi) the rate law for NO formation is R = k1[N2O], and (vii) the apparent activation energy for the formation of NO is 2.4 eV/molecule (2.3×102 kJ/mole).

Original languageEnglish
Pages (from-to)103-115
Number of pages13
JournalProgress in Surface Science
Issue number1-4
Publication statusPublished - Sep 1998


ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces

Cite this

Gupta, A., Toby, S., Gusev, E. P., Lu, H. C., Li, Y., Green, M. L., Gustafsson, T., & Garfunkel, E. (1998). Nitrous oxide gas phase chemistry during silicon oxynitride film growth. Progress in Surface Science, 59(1-4), 103-115.