Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6′-(OH)2bpy)

Lele Duan, Gerald F. Manbeck, Marta Kowalczyk, David J. Szalda, James Muckerman, Yuichiro Himeda, Etsuko Fujita

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2′:6′,2″-terpyridine; nDHBP = n,n′-dihydroxy-2,2′-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2′-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H+ with CO2.

Original languageEnglish
Pages (from-to)4582-4594
Number of pages13
JournalInorganic Chemistry
Volume55
Issue number9
DOIs
Publication statusPublished - May 2 2016

Fingerprint

Deprotonation
Catalysis
catalysis
Protons
Ligands
ligands
protons
quinones
electrolysis
Ruthenium
titration
Carbonates
ruthenium
carbonates
Titration
electron transfer
Electrolysis
mass spectroscopy
reactivity
actuators

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Physical and Theoretical Chemistry

Cite this

Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6′-(OH)2bpy). / Duan, Lele; Manbeck, Gerald F.; Kowalczyk, Marta; Szalda, David J.; Muckerman, James; Himeda, Yuichiro; Fujita, Etsuko.

In: Inorganic Chemistry, Vol. 55, No. 9, 02.05.2016, p. 4582-4594.

Research output: Contribution to journalArticle

@article{1af2bfb8cb154e34b0b871da157cf7fc,
title = "Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6′-(OH)2bpy)",
abstract = "Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2′:6′,2″-terpyridine; nDHBP = n,n′-dihydroxy-2,2′-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2′-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H+ with CO2.",
author = "Lele Duan and Manbeck, {Gerald F.} and Marta Kowalczyk and Szalda, {David J.} and James Muckerman and Yuichiro Himeda and Etsuko Fujita",
year = "2016",
month = "5",
day = "2",
doi = "10.1021/acs.inorgchem.6b00398",
language = "English",
volume = "55",
pages = "4582--4594",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "9",

}

TY - JOUR

T1 - Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6′-(OH)2bpy)

AU - Duan, Lele

AU - Manbeck, Gerald F.

AU - Kowalczyk, Marta

AU - Szalda, David J.

AU - Muckerman, James

AU - Himeda, Yuichiro

AU - Fujita, Etsuko

PY - 2016/5/2

Y1 - 2016/5/2

N2 - Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2′:6′,2″-terpyridine; nDHBP = n,n′-dihydroxy-2,2′-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2′-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H+ with CO2.

AB - Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2′:6′,2″-terpyridine; nDHBP = n,n′-dihydroxy-2,2′-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2′-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H+ with CO2.

UR - http://www.scopus.com/inward/record.url?scp=84968813843&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84968813843&partnerID=8YFLogxK

U2 - 10.1021/acs.inorgchem.6b00398

DO - 10.1021/acs.inorgchem.6b00398

M3 - Article

VL - 55

SP - 4582

EP - 4594

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 9

ER -