Novel liquid crystalline structures of a chiral side chain polymer and its phase transitions

L. S. Li, X. J. Hong, Samuel I Stupp

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Two novel smectic bilayer structures have been identified in an enantiomerically enriched chiral side chain polymer containing the highly dipolar nitrile group at stereocentres. The structures were characterized by electron diffraction, electron microscopy, and X-ray diffraction. In both phases each smectic layer has a bilayer structure with backbones and spacers confined in a thin disordered region between two sublayers of mesogenic segments. One of the structures which we denote as CrE* has the unusual feature of having its side chains arranged parallel to the layer normal in spite of its enantiomeric bias and twisted nature. In the second structure side chains are tilted by 34-8° with respect to the layer normal and we denote this phase as CrH*c. In both structures each sublayer contains three different orientations of orthorhombic (CrE*) or monoclinic (CrH*c) lattices which are related to one another by rotations of ±60° about the c-axis. In both the CrH*c and the CrE* phases, lattices in each sublayer are regularly rotated about the c-axis by 5-9° relative to those in the adjacent sublayer. The observation of a chiral CrH phase is uncommon and in this specific case the structure is unique since the rotation between adjacent layers occurs about the side-chain axis (c-axis) (CrH*c) and not about the layer normal (c*-axis) (CrH*). We believe the system undergoes a change in molecular organization from CrH*c to CrE* as a result of a chemical reaction which joins a fraction of the stereocentres through covalent bonds. With increasing temperature the CrE* structure was found to transform to a special orthorhombic untwisted smectic phase in which a=31/2b, denoted here as CrEh. The structure then transforms to a hexatic SB phase and finally to a SA phase at yet higher temperatures.

Original languageEnglish
Pages (from-to)469-483
Number of pages15
JournalLiquid Crystals
Volume21
Issue number4
Publication statusPublished - Oct 1996

Fingerprint

Polymers
Phase transitions
Crystalline materials
Nitriles
Covalent bonds
polymers
Liquids
liquids
Electron diffraction
Electron microscopy
Chemical reactions
X ray diffraction
Temperature
nitriles
covalent bonds
spacers
chemical reactions
electron microscopy
electron diffraction
diffraction

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Novel liquid crystalline structures of a chiral side chain polymer and its phase transitions. / Li, L. S.; Hong, X. J.; Stupp, Samuel I.

In: Liquid Crystals, Vol. 21, No. 4, 10.1996, p. 469-483.

Research output: Contribution to journalArticle

@article{1f9b5140e7c64e4a93fa5769e51aafc5,
title = "Novel liquid crystalline structures of a chiral side chain polymer and its phase transitions",
abstract = "Two novel smectic bilayer structures have been identified in an enantiomerically enriched chiral side chain polymer containing the highly dipolar nitrile group at stereocentres. The structures were characterized by electron diffraction, electron microscopy, and X-ray diffraction. In both phases each smectic layer has a bilayer structure with backbones and spacers confined in a thin disordered region between two sublayers of mesogenic segments. One of the structures which we denote as CrE* has the unusual feature of having its side chains arranged parallel to the layer normal in spite of its enantiomeric bias and twisted nature. In the second structure side chains are tilted by 34-8° with respect to the layer normal and we denote this phase as CrH*c. In both structures each sublayer contains three different orientations of orthorhombic (CrE*) or monoclinic (CrH*c) lattices which are related to one another by rotations of ±60° about the c-axis. In both the CrH*c and the CrE* phases, lattices in each sublayer are regularly rotated about the c-axis by 5-9° relative to those in the adjacent sublayer. The observation of a chiral CrH phase is uncommon and in this specific case the structure is unique since the rotation between adjacent layers occurs about the side-chain axis (c-axis) (CrH*c) and not about the layer normal (c*-axis) (CrH*). We believe the system undergoes a change in molecular organization from CrH*c to CrE* as a result of a chemical reaction which joins a fraction of the stereocentres through covalent bonds. With increasing temperature the CrE* structure was found to transform to a special orthorhombic untwisted smectic phase in which a=31/2b, denoted here as CrEh. The structure then transforms to a hexatic SB phase and finally to a SA phase at yet higher temperatures.",
author = "Li, {L. S.} and Hong, {X. J.} and Stupp, {Samuel I}",
year = "1996",
month = "10",
language = "English",
volume = "21",
pages = "469--483",
journal = "Liquid Crystals",
issn = "0267-8292",
publisher = "Taylor and Francis Ltd.",
number = "4",

}

TY - JOUR

T1 - Novel liquid crystalline structures of a chiral side chain polymer and its phase transitions

AU - Li, L. S.

AU - Hong, X. J.

AU - Stupp, Samuel I

PY - 1996/10

Y1 - 1996/10

N2 - Two novel smectic bilayer structures have been identified in an enantiomerically enriched chiral side chain polymer containing the highly dipolar nitrile group at stereocentres. The structures were characterized by electron diffraction, electron microscopy, and X-ray diffraction. In both phases each smectic layer has a bilayer structure with backbones and spacers confined in a thin disordered region between two sublayers of mesogenic segments. One of the structures which we denote as CrE* has the unusual feature of having its side chains arranged parallel to the layer normal in spite of its enantiomeric bias and twisted nature. In the second structure side chains are tilted by 34-8° with respect to the layer normal and we denote this phase as CrH*c. In both structures each sublayer contains three different orientations of orthorhombic (CrE*) or monoclinic (CrH*c) lattices which are related to one another by rotations of ±60° about the c-axis. In both the CrH*c and the CrE* phases, lattices in each sublayer are regularly rotated about the c-axis by 5-9° relative to those in the adjacent sublayer. The observation of a chiral CrH phase is uncommon and in this specific case the structure is unique since the rotation between adjacent layers occurs about the side-chain axis (c-axis) (CrH*c) and not about the layer normal (c*-axis) (CrH*). We believe the system undergoes a change in molecular organization from CrH*c to CrE* as a result of a chemical reaction which joins a fraction of the stereocentres through covalent bonds. With increasing temperature the CrE* structure was found to transform to a special orthorhombic untwisted smectic phase in which a=31/2b, denoted here as CrEh. The structure then transforms to a hexatic SB phase and finally to a SA phase at yet higher temperatures.

AB - Two novel smectic bilayer structures have been identified in an enantiomerically enriched chiral side chain polymer containing the highly dipolar nitrile group at stereocentres. The structures were characterized by electron diffraction, electron microscopy, and X-ray diffraction. In both phases each smectic layer has a bilayer structure with backbones and spacers confined in a thin disordered region between two sublayers of mesogenic segments. One of the structures which we denote as CrE* has the unusual feature of having its side chains arranged parallel to the layer normal in spite of its enantiomeric bias and twisted nature. In the second structure side chains are tilted by 34-8° with respect to the layer normal and we denote this phase as CrH*c. In both structures each sublayer contains three different orientations of orthorhombic (CrE*) or monoclinic (CrH*c) lattices which are related to one another by rotations of ±60° about the c-axis. In both the CrH*c and the CrE* phases, lattices in each sublayer are regularly rotated about the c-axis by 5-9° relative to those in the adjacent sublayer. The observation of a chiral CrH phase is uncommon and in this specific case the structure is unique since the rotation between adjacent layers occurs about the side-chain axis (c-axis) (CrH*c) and not about the layer normal (c*-axis) (CrH*). We believe the system undergoes a change in molecular organization from CrH*c to CrE* as a result of a chemical reaction which joins a fraction of the stereocentres through covalent bonds. With increasing temperature the CrE* structure was found to transform to a special orthorhombic untwisted smectic phase in which a=31/2b, denoted here as CrEh. The structure then transforms to a hexatic SB phase and finally to a SA phase at yet higher temperatures.

UR - http://www.scopus.com/inward/record.url?scp=0001320718&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001320718&partnerID=8YFLogxK

M3 - Article

VL - 21

SP - 469

EP - 483

JO - Liquid Crystals

JF - Liquid Crystals

SN - 0267-8292

IS - 4

ER -