Optical and electrochemical effects of H2and O2bubbles at upward-facing Si photoelectrodes

Paul A. Kempler, Zachary P. Ifkovits, Weilai Yu, Azhar I. Carim, Nathan S. Lewis

Research output: Contribution to journalArticlepeer-review

Abstract

The effects of the size, contact-angle, and coverage of gas bubbles on solar fuels devices were characterized at cm-scale, upward-facing planar and microwire-array Si photoelectrodes in stagnant electrolytes. Experimental measurements were supported by ray-tracing simulations of surface attached gas bubble films. A dilute, redox-active tracer allowed for the quantification of the mass-transport effects of bubble coverage during photoanodic O2(g) evolution at upward-facing photoanodes in 1.0 M KOH(aq.). Measurements of the gas coverage at upward-facing p-Si photocathodes in 0.50 M H2SO4(aq.) allowed for the nucleation rate and contact angle of H2(g) bubbles to be evaluated for systems having various surface free energies. Under simulated solar illumination, the rapid departure of small O2(g) bubbles produced stable photocurrents at upward-facing oxygen-evolving Si photoanodes and yielded increased mass-transport velocities relative to a stagnant electrolyte, indicating that bubbles can provide a net benefit to the photoelectrochemical performance of an upward-facing photoanode in solar fuels devices.

Original languageEnglish
Pages (from-to)414-423
Number of pages10
JournalEnergy and Environmental Science
Volume14
Issue number1
DOIs
Publication statusPublished - Jan 2021

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint Dive into the research topics of 'Optical and electrochemical effects of H<sub>2</sub>and O<sub>2</sub>bubbles at upward-facing Si photoelectrodes'. Together they form a unique fingerprint.

Cite this