Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures

Michael B. Ross, Chad A. Mirkin, George C Schatz

Research output: Contribution to journalArticle

92 Citations (Scopus)

Abstract

This Feature Article describes research on the optical properties of arrays of silver and gold nanoparticles, particles that exhibit localized surface plasmon resonances in the visible and near-infrared. These resonances lead to strong absorption and scattering of light that is strongly dependent on nanoparticle size and shape. When arranged into multidimensional arrays, the nanoparticles strongly interact such that the collective properties can be rationally designed by changing the dimensions of the array (one-, two-, or three-dimensional), interparticle spacing, and array shape or morphology. Emerging from this work is a large body of literature focusing on one-, two-, and three-dimensional arrays, which provide unique opportunities for realizing materials with interesting and unusual photonic and metamaterial properties. Electrodynamics theory provides an accurate description of the optical properties, often based on simple models such as coupled dipoles, effective medium theory, and anomalous diffraction. In turn, simple models and simulation methods allow for the prediction and explanation of a variety of observed optical properties. In one and two dimensions, these tunable optical properties range from extinction spectra that are red- or blue-shifted compared to the isolated particles to lattice plasmon modes that involve strong interactions between localized plasmon resonances in the nanoparticles and photonic modes that derive from Bragg diffraction in the crystalline array. Three-dimensional arrays can exhibit unique effective medium properties, such as negative permittivity that leads to metallic optical response even when there is less than 1% metal content in the array. They also can be rationally designed to have photonic scattering modes dictated and controlled by interactions between nanoscale plasmonic nanoparticles and the mesoscale superlattice crystal habit (i.e., the crystalline size, shape, and morphology). This discussion of plasmonic arrays across multiple dimensions provides a comprehensive description of those factors that can be easily tuned for the design of plasmon-based optical materials.

Original languageEnglish
Pages (from-to)816-830
Number of pages15
JournalJournal of Physical Chemistry C
Volume120
Issue number2
DOIs
Publication statusPublished - Jan 21 2016

Fingerprint

Nanostructures
Optical properties
Nanoparticles
optical properties
Photonics
nanoparticles
Diffraction
Scattering
Crystalline materials
photonics
Optical materials
Electrodynamics
Metamaterials
Surface plasmon resonance
Silver
Gold
Permittivity
Metals
Infrared radiation
habits

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films
  • Energy(all)

Cite this

Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. / Ross, Michael B.; Mirkin, Chad A.; Schatz, George C.

In: Journal of Physical Chemistry C, Vol. 120, No. 2, 21.01.2016, p. 816-830.

Research output: Contribution to journalArticle

@article{d860f79bde264d36b298e8f48e626d4d,
title = "Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures",
abstract = "This Feature Article describes research on the optical properties of arrays of silver and gold nanoparticles, particles that exhibit localized surface plasmon resonances in the visible and near-infrared. These resonances lead to strong absorption and scattering of light that is strongly dependent on nanoparticle size and shape. When arranged into multidimensional arrays, the nanoparticles strongly interact such that the collective properties can be rationally designed by changing the dimensions of the array (one-, two-, or three-dimensional), interparticle spacing, and array shape or morphology. Emerging from this work is a large body of literature focusing on one-, two-, and three-dimensional arrays, which provide unique opportunities for realizing materials with interesting and unusual photonic and metamaterial properties. Electrodynamics theory provides an accurate description of the optical properties, often based on simple models such as coupled dipoles, effective medium theory, and anomalous diffraction. In turn, simple models and simulation methods allow for the prediction and explanation of a variety of observed optical properties. In one and two dimensions, these tunable optical properties range from extinction spectra that are red- or blue-shifted compared to the isolated particles to lattice plasmon modes that involve strong interactions between localized plasmon resonances in the nanoparticles and photonic modes that derive from Bragg diffraction in the crystalline array. Three-dimensional arrays can exhibit unique effective medium properties, such as negative permittivity that leads to metallic optical response even when there is less than 1{\%} metal content in the array. They also can be rationally designed to have photonic scattering modes dictated and controlled by interactions between nanoscale plasmonic nanoparticles and the mesoscale superlattice crystal habit (i.e., the crystalline size, shape, and morphology). This discussion of plasmonic arrays across multiple dimensions provides a comprehensive description of those factors that can be easily tuned for the design of plasmon-based optical materials.",
author = "Ross, {Michael B.} and Mirkin, {Chad A.} and Schatz, {George C}",
year = "2016",
month = "1",
day = "21",
doi = "10.1021/acs.jpcc.5b10800",
language = "English",
volume = "120",
pages = "816--830",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "2",

}

TY - JOUR

T1 - Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures

AU - Ross, Michael B.

AU - Mirkin, Chad A.

AU - Schatz, George C

PY - 2016/1/21

Y1 - 2016/1/21

N2 - This Feature Article describes research on the optical properties of arrays of silver and gold nanoparticles, particles that exhibit localized surface plasmon resonances in the visible and near-infrared. These resonances lead to strong absorption and scattering of light that is strongly dependent on nanoparticle size and shape. When arranged into multidimensional arrays, the nanoparticles strongly interact such that the collective properties can be rationally designed by changing the dimensions of the array (one-, two-, or three-dimensional), interparticle spacing, and array shape or morphology. Emerging from this work is a large body of literature focusing on one-, two-, and three-dimensional arrays, which provide unique opportunities for realizing materials with interesting and unusual photonic and metamaterial properties. Electrodynamics theory provides an accurate description of the optical properties, often based on simple models such as coupled dipoles, effective medium theory, and anomalous diffraction. In turn, simple models and simulation methods allow for the prediction and explanation of a variety of observed optical properties. In one and two dimensions, these tunable optical properties range from extinction spectra that are red- or blue-shifted compared to the isolated particles to lattice plasmon modes that involve strong interactions between localized plasmon resonances in the nanoparticles and photonic modes that derive from Bragg diffraction in the crystalline array. Three-dimensional arrays can exhibit unique effective medium properties, such as negative permittivity that leads to metallic optical response even when there is less than 1% metal content in the array. They also can be rationally designed to have photonic scattering modes dictated and controlled by interactions between nanoscale plasmonic nanoparticles and the mesoscale superlattice crystal habit (i.e., the crystalline size, shape, and morphology). This discussion of plasmonic arrays across multiple dimensions provides a comprehensive description of those factors that can be easily tuned for the design of plasmon-based optical materials.

AB - This Feature Article describes research on the optical properties of arrays of silver and gold nanoparticles, particles that exhibit localized surface plasmon resonances in the visible and near-infrared. These resonances lead to strong absorption and scattering of light that is strongly dependent on nanoparticle size and shape. When arranged into multidimensional arrays, the nanoparticles strongly interact such that the collective properties can be rationally designed by changing the dimensions of the array (one-, two-, or three-dimensional), interparticle spacing, and array shape or morphology. Emerging from this work is a large body of literature focusing on one-, two-, and three-dimensional arrays, which provide unique opportunities for realizing materials with interesting and unusual photonic and metamaterial properties. Electrodynamics theory provides an accurate description of the optical properties, often based on simple models such as coupled dipoles, effective medium theory, and anomalous diffraction. In turn, simple models and simulation methods allow for the prediction and explanation of a variety of observed optical properties. In one and two dimensions, these tunable optical properties range from extinction spectra that are red- or blue-shifted compared to the isolated particles to lattice plasmon modes that involve strong interactions between localized plasmon resonances in the nanoparticles and photonic modes that derive from Bragg diffraction in the crystalline array. Three-dimensional arrays can exhibit unique effective medium properties, such as negative permittivity that leads to metallic optical response even when there is less than 1% metal content in the array. They also can be rationally designed to have photonic scattering modes dictated and controlled by interactions between nanoscale plasmonic nanoparticles and the mesoscale superlattice crystal habit (i.e., the crystalline size, shape, and morphology). This discussion of plasmonic arrays across multiple dimensions provides a comprehensive description of those factors that can be easily tuned for the design of plasmon-based optical materials.

UR - http://www.scopus.com/inward/record.url?scp=84955488030&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84955488030&partnerID=8YFLogxK

U2 - 10.1021/acs.jpcc.5b10800

DO - 10.1021/acs.jpcc.5b10800

M3 - Article

VL - 120

SP - 816

EP - 830

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 2

ER -