Oxygen transfer from organoelement oxides to carbon monoxide catalyzed by transition metal carbonyls

Anne M. Kelly, Glen P. Rosini, Alan S Goldman

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Solutions of Rh(PR3)2(CO)Cl (R = Me, Ph) are found to catalyze the rapid transfer of oxygen from amine oxides or organoselenium oxides to carbon monoxide; however, the rhodium complexes undergo no reaction with the oxides in the absence of added CO. Kinetic studies indicate that the catalytically active species is the CO-substituted complex Rh(PR3)(CO)2Cl, although it is not present in any observable concentration under the conditions of the reaction. Ir(PPh3)2(CO)2Cl also acts as an efficient catalyst precursor for the same oxygen transfer reactions, although like the rhodium complex it undergoes little or no direct reaction with the oxides. The catalytically active species is again found to be the product of substitution of a ligand (in this case, chloride) by CO: [Ir(PPh3)2(CO)3]+ in either ion-paired or unpaired states. Among substrates with weak E-O bonds (E = N, Se), reactivity correlates with substrate basicity in accord with a transition state having the character of a nucleophilic attack (at carbonyl carbon). Oxides with much stronger E-O bonds, even the highly basic triphenylarsine oxide, are much less reactive; the transition state in this case apparently involves significant E-O bond breaking and is presumably not well modeled as a simple nucleophilic attack. Pt(Ph3As)(CO)Cl2 was found to act as a good catalyst precursor for deoxygenation of arsine oxide, but this system is apparently very complex and the nature of the catalytically active species has not been elucidated.

Original languageEnglish
Pages (from-to)6115-6125
Number of pages11
JournalJournal of the American Chemical Society
Volume119
Issue number26
DOIs
Publication statusPublished - 1997

Fingerprint

Carbon Monoxide
Carbon monoxide
Oxides
Transition metals
Metals
Oxygen
Rhodium
Catalysts
Substrates
Alkalinity
Amines
Substitution reactions
Ligands
Chlorides
Carbon
Kinetics
Ions

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Oxygen transfer from organoelement oxides to carbon monoxide catalyzed by transition metal carbonyls. / Kelly, Anne M.; Rosini, Glen P.; Goldman, Alan S.

In: Journal of the American Chemical Society, Vol. 119, No. 26, 1997, p. 6115-6125.

Research output: Contribution to journalArticle

@article{cb3bde7bf63044c9a1670056a4ba8bc0,
title = "Oxygen transfer from organoelement oxides to carbon monoxide catalyzed by transition metal carbonyls",
abstract = "Solutions of Rh(PR3)2(CO)Cl (R = Me, Ph) are found to catalyze the rapid transfer of oxygen from amine oxides or organoselenium oxides to carbon monoxide; however, the rhodium complexes undergo no reaction with the oxides in the absence of added CO. Kinetic studies indicate that the catalytically active species is the CO-substituted complex Rh(PR3)(CO)2Cl, although it is not present in any observable concentration under the conditions of the reaction. Ir(PPh3)2(CO)2Cl also acts as an efficient catalyst precursor for the same oxygen transfer reactions, although like the rhodium complex it undergoes little or no direct reaction with the oxides. The catalytically active species is again found to be the product of substitution of a ligand (in this case, chloride) by CO: [Ir(PPh3)2(CO)3]+ in either ion-paired or unpaired states. Among substrates with weak E-O bonds (E = N, Se), reactivity correlates with substrate basicity in accord with a transition state having the character of a nucleophilic attack (at carbonyl carbon). Oxides with much stronger E-O bonds, even the highly basic triphenylarsine oxide, are much less reactive; the transition state in this case apparently involves significant E-O bond breaking and is presumably not well modeled as a simple nucleophilic attack. Pt(Ph3As)(CO)Cl2 was found to act as a good catalyst precursor for deoxygenation of arsine oxide, but this system is apparently very complex and the nature of the catalytically active species has not been elucidated.",
author = "Kelly, {Anne M.} and Rosini, {Glen P.} and Goldman, {Alan S}",
year = "1997",
doi = "10.1021/ja970158s",
language = "English",
volume = "119",
pages = "6115--6125",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "26",

}

TY - JOUR

T1 - Oxygen transfer from organoelement oxides to carbon monoxide catalyzed by transition metal carbonyls

AU - Kelly, Anne M.

AU - Rosini, Glen P.

AU - Goldman, Alan S

PY - 1997

Y1 - 1997

N2 - Solutions of Rh(PR3)2(CO)Cl (R = Me, Ph) are found to catalyze the rapid transfer of oxygen from amine oxides or organoselenium oxides to carbon monoxide; however, the rhodium complexes undergo no reaction with the oxides in the absence of added CO. Kinetic studies indicate that the catalytically active species is the CO-substituted complex Rh(PR3)(CO)2Cl, although it is not present in any observable concentration under the conditions of the reaction. Ir(PPh3)2(CO)2Cl also acts as an efficient catalyst precursor for the same oxygen transfer reactions, although like the rhodium complex it undergoes little or no direct reaction with the oxides. The catalytically active species is again found to be the product of substitution of a ligand (in this case, chloride) by CO: [Ir(PPh3)2(CO)3]+ in either ion-paired or unpaired states. Among substrates with weak E-O bonds (E = N, Se), reactivity correlates with substrate basicity in accord with a transition state having the character of a nucleophilic attack (at carbonyl carbon). Oxides with much stronger E-O bonds, even the highly basic triphenylarsine oxide, are much less reactive; the transition state in this case apparently involves significant E-O bond breaking and is presumably not well modeled as a simple nucleophilic attack. Pt(Ph3As)(CO)Cl2 was found to act as a good catalyst precursor for deoxygenation of arsine oxide, but this system is apparently very complex and the nature of the catalytically active species has not been elucidated.

AB - Solutions of Rh(PR3)2(CO)Cl (R = Me, Ph) are found to catalyze the rapid transfer of oxygen from amine oxides or organoselenium oxides to carbon monoxide; however, the rhodium complexes undergo no reaction with the oxides in the absence of added CO. Kinetic studies indicate that the catalytically active species is the CO-substituted complex Rh(PR3)(CO)2Cl, although it is not present in any observable concentration under the conditions of the reaction. Ir(PPh3)2(CO)2Cl also acts as an efficient catalyst precursor for the same oxygen transfer reactions, although like the rhodium complex it undergoes little or no direct reaction with the oxides. The catalytically active species is again found to be the product of substitution of a ligand (in this case, chloride) by CO: [Ir(PPh3)2(CO)3]+ in either ion-paired or unpaired states. Among substrates with weak E-O bonds (E = N, Se), reactivity correlates with substrate basicity in accord with a transition state having the character of a nucleophilic attack (at carbonyl carbon). Oxides with much stronger E-O bonds, even the highly basic triphenylarsine oxide, are much less reactive; the transition state in this case apparently involves significant E-O bond breaking and is presumably not well modeled as a simple nucleophilic attack. Pt(Ph3As)(CO)Cl2 was found to act as a good catalyst precursor for deoxygenation of arsine oxide, but this system is apparently very complex and the nature of the catalytically active species has not been elucidated.

UR - http://www.scopus.com/inward/record.url?scp=0030803440&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030803440&partnerID=8YFLogxK

U2 - 10.1021/ja970158s

DO - 10.1021/ja970158s

M3 - Article

AN - SCOPUS:0030803440

VL - 119

SP - 6115

EP - 6125

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 26

ER -