Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials

Thuy Duong Nguyen-Phan, Viet Hung Pham, Jin Suk Chung, Manish Chhowalla, Teddy Asefa, Woo Jae Kim, Eun Woo Shin

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Composite materials of Sn-doped TiO2 nanoparticles (4-6 nm) uniformly anchored onto reduced graphene oxide (RGO) sheets were fabricated by a hydrothermal process. When compared with an undoped TiO2/RGO composite material, the partial substitution of Sn4+ for Ti 4+ in TiO2/RGO in different doping concentrations not only increased the specific surface area, but also narrowed the band gap energy of the material. It also resulted in a shift in the photoresponse of the material into the visible light region, an increase in the relative intensity of its Raman (D/G) band, and changes in its X-ray photoelectron spectra; these results implied strong interactions between the Sn species and nanosized TiO2 as well as between the TiO2 and RGO layers. The presence of RGO led to enhanced adsorptivity of methyl orange onto the material compared with that of either pure TiO2 or Sn-doped TiO2. Increasing the Sn dopant content to optimal value facilitated photoactivity under both UV and visible light irradiation. The incorporation of both RGO and Sn dopants significantly modified the electronic structure of TiO2, altering the electron transfer direction and efficiently prohibiting the recombination of photo-induced charge carriers.

Original languageEnglish
Pages (from-to)21-30
Number of pages10
JournalApplied Catalysis A: General
Volume473
DOIs
Publication statusPublished - Mar 5 2014

    Fingerprint

Keywords

  • Graphene
  • Nanocomposite
  • Photocatalysis
  • Sn doping
  • TiO

ASJC Scopus subject areas

  • Catalysis
  • Process Chemistry and Technology

Cite this