Photoelectrochemical behavior of planar and microwire-array Si | GaP electrodes

Nicholas C. Strandwitz, Daniel B. Turner-Evans, Adele C. Tamboli, Christopher T. Chen, Harry A. Atwater, Nathan S. Lewis

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Gallium phosphide exhibits a short diffusion length relative to its optical absorption length, and is thus a candidate for use in wire array geometries that allow light absorption to be decoupled from minority carrier collection. Herein is reported the photoanodic performance of heteroepitaxially grown gallium phosphide on planar and microwire-array Si substrates. The n-GaP | n-Si heterojunction results in a favorable conduction band alignment for electron collection in the silicon. A conformal electrochemical contact to the outer GaP layer is produced using the ferrocenium/ferrocene (Fc + /Fc) redox couple in acetonitrile. Photovoltages of ̃ 750 mV under 1 sun illumination are observed and are attributed to the barrier formed at the (Fc + /Fc) | n-GaP junction. The short-circuit current densities of the composite microwire-arrays are similar to those observed using single-crystal n-GaP photoelectrodes. Spectral response measurements along with a fi nitedifference- time-domain optical model indicate that the minority carrier diffusion length in the GaP is ̃ 80 nm. Solid-state current-voltage measurements show that shunting occurs through thin GaP layers that are present near the base of the microwire-arrays. The results provide guidance for further studies of 3D multi-junction photoelectrochemical cells.

Original languageEnglish
Pages (from-to)1109-1116
Number of pages8
JournalAdvanced Energy Materials
Volume2
Issue number9
DOIs
Publication statusPublished - Sep 2012

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Photoelectrochemical behavior of planar and microwire-array Si | GaP electrodes'. Together they form a unique fingerprint.

Cite this